Goto

Collaborating Authors

 Murugesan, Gowtham Krishnan


Improving Lesion Segmentation in FDG-18 Whole-Body PET/CT scans using Multilabel approach: AutoPET II challenge

arXiv.org Artificial Intelligence

Automatic segmentation of lesions in FDG-18 Whole Body (WB) PET/CT scans using deep learning models is instrumental for determining treatment response, optimizing dosimetry, and advancing theranostic applications in oncology. However, the presence of organs with elevated radiotracer uptake, such as the liver, spleen, brain, and bladder, often leads to challenges, as these regions are often misidentified as lesions by deep learning models. To address this issue, we propose a novel approach of segmenting both organs and lesions, aiming to enhance the performance of automatic lesion segmentation methods. In this study, we assessed the effectiveness of our proposed method using the AutoPET II challenge dataset, which comprises 1014 subjects. We evaluated the impact of inclusion of additional labels and data in the segmentation performance of the model. In addition to the expert-annotated lesion labels, we introduced eight additional labels for organs, including the liver, kidneys, urinary bladder, spleen, lung, brain, heart, and stomach. These labels were integrated into the dataset, and a 3D UNET model was trained within the nnUNet framework. Our results demonstrate that our method achieved the top ranking in the held-out test dataset, underscoring the potential of this approach to significantly improve lesion segmentation accuracy in FDG-18 Whole-Body PET/CT scans, ultimately benefiting cancer patients and advancing clinical practice.


Biomedical image analysis competitions: The state of current participation practice

arXiv.org Artificial Intelligence

The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.


QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results

arXiv.org Artificial Intelligence

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses.