Goto

Collaborating Authors

 Murthy, Surya


A Reinforcement Learning Approach to Quiet and Safe UAM Traffic Management

arXiv.org Artificial Intelligence

Urban air mobility (UAM) is a transformative system that operates various small aerial vehicles in urban environments to reshape urban transportation. However, integrating UAM into existing urban environments presents a variety of complex challenges. Recent analyses of UAM's operational constraints highlight aircraft noise and system safety as key hurdles to UAM system implementation. Future UAM air traffic management schemes must ensure that the system is both quiet and safe. We propose a multi-agent reinforcement learning approach to manage UAM traffic, aiming at both vertical separation assurance and noise mitigation. Through extensive training, the reinforcement learning agent learns to balance the two primary objectives by employing altitude adjustments in a multi-layer UAM network. The results reveal the tradeoffs among noise impact, traffic congestion, and separation. Overall, our findings demonstrate the potential of reinforcement learning in mitigating UAM's noise impact while maintaining safe separation using altitude adjustments


Separation Assurance in Urban Air Mobility Systems using Shared Scheduling Protocols

arXiv.org Artificial Intelligence

Ensuring safe separation between aircraft is a critical challenge in air traffic management, particularly in urban air mobility (UAM) environments where high traffic density and low altitudes require precise control. In these environments, conflicts often arise at the intersections of flight corridors, posing significant risks. We propose a tactical separation approach leveraging shared scheduling protocols, originally designed for Ethernet networks and operating systems, to coordinate access to these intersections. Using a decentralized Markov decision process framework, the proposed approach enables aircraft to autonomously adjust their speed and timing as they navigate these critical areas, maintaining safe separation without a central controller. We evaluate the effectiveness of this approach in simulated UAM scenarios, demonstrating its ability to reduce separation violations to zero while acknowledging trade-offs in flight times as traffic density increases. Additionally, we explore the impact of non-compliant aircraft, showing that while shared scheduling protocols can no longer guarantee safe separation, they still provide significant improvements over systems without scheduling protocols.


Conveying Autonomous Robot Capabilities through Contrasting Behaviour Summaries

arXiv.org Artificial Intelligence

As advances in artificial intelligence enable increasingly capable learning-based autonomous agents, it becomes more challenging for human observers to efficiently construct a mental model of the agent's behaviour. In order to successfully deploy autonomous agents, humans should not only be able to understand the individual limitations of the agents but also have insight on how they compare against one another. To do so, we need effective methods for generating human interpretable agent behaviour summaries. Single agent behaviour summarization has been tackled in the past through methods that generate explanations for why an agent chose to pick a particular action at a single timestep. However, for complex tasks, a per-action explanation may not be able to convey an agents global strategy. As a result, researchers have looked towards multi-timestep summaries which can better help humans assess an agents overall capability. More recently, multi-step summaries have also been used for generating contrasting examples to evaluate multiple agents. However, past approaches have largely relied on unstructured search methods to generate summaries and require agents to have a discrete action space. In this paper we present an adaptive search method for efficiently generating contrasting behaviour summaries with support for continuous state and action spaces. We perform a user study to evaluate the effectiveness of the summaries for helping humans discern the superior autonomous agent for a given task. Our results indicate that adaptive search can efficiently identify informative contrasting scenarios that enable humans to accurately select the better performing agent with a limited observation time budget.