Goto

Collaborating Authors

 Murali, Prajval Kumar


GMCR: Graph-based Maximum Consensus Estimation for Point Cloud Registration

arXiv.org Artificial Intelligence

Point cloud registration is a fundamental and challenging problem for autonomous robots interacting in unstructured environments for applications such as object pose estimation, simultaneous localization and mapping, robot-sensor calibration, and so on. In global correspondence-based point cloud registration, data association is a highly brittle task and commonly produces high amounts of outliers. Failure to reject outliers can lead to errors propagating to downstream perception tasks. Maximum Consensus (MC) is a widely used technique for robust estimation, which is however known to be NP-hard. Exact methods struggle to scale to realistic problem instances, whereas high outlier rates are challenging for approximate methods. To this end, we propose Graph-based Maximum Consensus Registration (GMCR), which is highly robust to outliers and scales to realistic problem instances. We propose novel consensus functions to map the decoupled MC-objective to the graph domain, wherein we find a tight approximation to the maximum consensus set as the maximum clique. The final pose estimate is given in closed-form. We extensively evaluated our proposed GMCR on a synthetic registration benchmark, robotic object localization task, and additionally on a scan matching benchmark. Our proposed method shows high accuracy and time efficiency compared to other state-of-the-art MC methods and compares favorably to other robust registration methods.


Touch if it's transparent! ACTOR: Active Tactile-based Category-Level Transparent Object Reconstruction

arXiv.org Artificial Intelligence

Accurate shape reconstruction of transparent objects is a challenging task due to their non-Lambertian surfaces and yet necessary for robots for accurate pose perception and safe manipulation. As vision-based sensing can produce erroneous measurements for transparent objects, the tactile modality is not sensitive to object transparency and can be used for reconstructing the object's shape. We propose ACTOR, a novel framework for ACtive tactile-based category-level Transparent Object Reconstruction. ACTOR leverages large datasets of synthetic object with our proposed self-supervised learning approach for object shape reconstruction as the collection of real-world tactile data is prohibitively expensive. ACTOR can be used during inference with tactile data from category-level unknown transparent objects for reconstruction. Furthermore, we propose an active-tactile object exploration strategy as probing every part of the object surface can be sample inefficient. We also demonstrate tactile-based category-level object pose estimation task using ACTOR. We perform an extensive evaluation of our proposed methodology with real-world robotic experiments with comprehensive comparison studies with state-of-the-art approaches. Our proposed method outperforms these approaches in terms of tactile-based object reconstruction and object pose estimation.


Deployment and Evaluation of a Flexible Human-Robot Collaboration Model Based on AND/OR Graphs in a Manufacturing Environment

arXiv.org Artificial Intelligence

The Industry 4.0 paradigm promises shorter development times, increased ergonomy, higher flexibility, and resource efficiency in manufacturing environments. Collaborative robots are an important tangible technology for implementing such a paradigm. A major bottleneck to effectively deploy collaborative robots to manufacturing industries is developing task planning algorithms that enable them to recognize and naturally adapt to varying and even unpredictable human actions while simultaneously ensuring an overall efficiency in terms of production cycle time. In this context, an architecture encompassing task representation, task planning, sensing, and robot control has been designed, developed and evaluated in a real industrial environment. A pick-and-place palletization task, which requires the collaboration between humans and robots, is investigated. The architecture uses AND/OR graphs for representing and reasoning upon human-robot collaboration models online. Furthermore, objective measures of the overall computational performance and subjective measures of naturalness in human-robot collaboration have been evaluated by performing experiments with production-line operators. The results of this user study demonstrate how human-robot collaboration models like the one we propose can leverage the flexibility and the comfort of operators in the workplace. In this regard, an extensive comparison study among recent models has been carried out.