Goto

Collaborating Authors

 Murad, Saydul Akbar


Multi-Lingual Cyber Threat Detection in Tweets/X Using ML, DL, and LLM: A Comparative Analysis

arXiv.org Artificial Intelligence

Cyber threat detection has become an important area of focus in today's digital age due to the growing spread of fake information and harmful content on social media platforms such as Twitter (now 'X'). These cyber threats, often disguised within tweets, pose significant risks to individuals, communities, and even nations, emphasizing the need for effective detection systems. While previous research has explored tweet-based threats, much of the work is limited to specific languages, domains, or locations, or relies on single-model approaches, reducing their applicability to diverse real-world scenarios. To address these gaps, our study focuses on multi-lingual tweet cyber threat detection using a variety of advanced models. The research was conducted in three stages: (1) We collected and labeled tweet datasets in four languages English, Chinese, Russian, and Arabic employing both manual and polarity-based labeling methods to ensure high-quality annotations. (2) Each dataset was analyzed individually using machine learning (ML) and deep learning (DL) models to assess their performance on distinct languages. (3) Finally, we combined all four datasets into a single multi-lingual dataset and applied DL and large language model (LLM) architectures to evaluate their efficacy in identifying cyber threats across various languages. Our results show that among machine learning models, Random Forest (RF) attained the highest performance; however, the Bi-LSTM architecture consistently surpassed other DL and LLM architectures across all datasets. These findings underline the effectiveness of Bi-LSTM in multilingual cyber threat detection. The code for this paper can be found at this link: https://github.com/Mmurrad/Tweet-Data-Classification.git.


Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification

arXiv.org Artificial Intelligence

Algorithmic level developments like Convolutional Neural Networks, transformers, attention mechanism, Retrieval Augmented Generation and so on have changed Artificial Intelligence. Recent such development was observed by Kolmogorov-Arnold Networks that suggested to challenge the fundamental concept of a Neural Network, thus change Multilayer Perceptron, and Convolutional Neural Networks. They received a good reception in terms of scientific modeling, yet had some drawbacks in terms of efficiency. In this paper, we train Convolutional Kolmogorov Arnold Networks (CKANs) with the ImageNet-1k dataset with 1.3 million images, MNIST dataset with 60k images and a tabular biological science related MoA dataset and test the promise of CKANs in terms of FLOPS, Inference Time, number of trainable parameters and training time against the accuracy, precision, recall and f-1 score they produce against the standard industry practice on CNN models. We show that the CKANs perform fair yet slower than CNNs in small size dataset like MoA and MNIST but are not nearly comparable as the dataset gets larger and more complex like the ImageNet. The code implementation of this paper can be found on the link: \href{https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks}{https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks}


Heuristical Comparison of Vision Transformers Against Convolutional Neural Networks for Semantic Segmentation on Remote Sensing Imagery

arXiv.org Artificial Intelligence

Vision Transformers (ViT) have recently brought a new wave of research in the field of computer vision. These models have done particularly well in the field of image classification and segmentation. Research on semantic and instance segmentation has emerged to accelerate with the inception of the new architecture, with over 80\% of the top 20 benchmarks for the iSAID dataset being either based on the ViT architecture or the attention mechanism behind its success. This paper focuses on the heuristic comparison of three key factors of using (or not using) ViT for semantic segmentation of remote sensing aerial images on the iSAID. The experimental results observed during the course of the research were under the scrutinization of the following objectives: 1. Use of weighted fused loss function for the maximum mean Intersection over Union (mIoU) score, Dice score, and minimization or conservation of entropy or class representation, 2. Comparison of transfer learning on Meta's MaskFormer, a ViT-based semantic segmentation model, against generic UNet Convolutional Neural Networks (CNNs) judged over mIoU, Dice scores, training efficiency, and inference time, and 3. What do we lose for what we gain? i.e., the comparison of the two models against current state-of-art segmentation models. We show the use of the novel combined weighted loss function significantly boosts the CNN model's performance capacities as compared to transfer learning the ViT. The code for this implementation can be found on \url{https://github.com/ashimdahal/ViT-vs-CNN-ImageSegmentation}.


Unveiling Thoughts: A Review of Advancements in EEG Brain Signal Decoding into Text

arXiv.org Artificial Intelligence

The conversion of brain activity into text using electroencephalography (EEG) has gained significant traction in recent years. Many researchers are working to develop new models to decode EEG signals into text form. Although this area has shown promising developments, it still faces numerous challenges that necessitate further improvement. It's important to outline this area's recent developments and future research directions. In this review article, we thoroughly summarize the progress in EEG-to-text conversion. Firstly, we talk about how EEG-to-text technology has grown and what problems we still face. Secondly, we discuss existing techniques used in this field. This includes methods for collecting EEG data, the steps to process these signals, and the development of systems capable of translating these signals into coherent text. We conclude with potential future research directions, emphasizing the need for enhanced accuracy, reduced system constraints, and the exploration of novel applications across varied sectors. By addressing these aspects, this review aims to contribute to developing more accessible and effective Brain-Computer Interface (BCI) technology for a broader user base.