Munoz, Juan Pablo
The Landscape and Challenges of HPC Research and LLMs
Chen, Le, Ahmed, Nesreen K., Dutta, Akash, Bhattacharjee, Arijit, Yu, Sixing, Mahmud, Quazi Ishtiaque, Abebe, Waqwoya, Phan, Hung, Sarkar, Aishwarya, Butler, Branden, Hasabnis, Niranjan, Oren, Gal, Vo, Vy A., Munoz, Juan Pablo, Willke, Theodore L., Mattson, Tim, Jannesari, Ali
Recently, language models (LMs), especially large language models (LLMs), have revolutionized the field of deep learning. Both encoder-decoder models and prompt-based techniques have shown immense potential for natural language processing and code-based tasks. Over the past several years, many research labs and institutions have invested heavily in high-performance computing, approaching or breaching exascale performance levels. In this paper, we posit that adapting and utilizing such language model-based techniques for tasks in high-performance computing (HPC) would be very beneficial. This study presents our reasoning behind the aforementioned position and highlights how existing ideas can be improved and adapted for HPC tasks.
Learning to Avoid Collisions
Sklar, Elizabeth (Brooklyn College, City University of New York) | Parsons, Simon (Brooklyn College, City University of New York) | Epstein, Susan L. (Hunter College, City University of New York) | Ozgelen, Arif Tuna (The Graduate Center, City University of New York) | Munoz, Juan Pablo (The Graduate Center, City University of New York) | Abbasi, Farah (College of Staten Island, City University of New York) | Schneider, Eric (Hunter College, City University of New York) | Costantino, Michael (College of Staten Island, City University of New York)
Members of a multi-robot team, operating within close quarters, need to avoid crashing into each other. Simple collision avoidance methods can be used to prevent such collisions, typically by computing the distance to other robots and stopping, perhaps moving away, when this distance falls below a certain threshold. While this approach may avoid disaster, it may also reduce the team's efficiency if robots halt for a long time to let others pass by or if they travel further to move around one another. This paper reports on experiments where a human operator, through a graphical user interface, watches robots perform an exploration task. The operator can manually suspend robots' movements before they crash into each other, and then resume their movements when their paths are clear. Experiment logs record the robots' states when they are paused and resumed. A behavior pattern for collision avoidance is learned, by classifying the states of the robots' environment when the human operator issues "wait" and "resume" commands. Preliminary results indicate that it is possible to learn a classifier which models these behavior patterns, and that different human operators consider different factors when making decisions about stopping and starting robots.
A Framework in which Robots and Humans Help Each Other
Sklar, Elizabeth (Brooklyn College, City University of New York) | Epstein, Susan L. (Hunter College, City University of New York) | Parsons, Simon (Brooklyn College, City University of New York) | Ozgelen, Arif T. (The Graduate Center, City University of New York) | Munoz, Juan Pablo (Brooklyn College, City University of New York) | Gonzalez, Joel (City College, City University of New York)
Within the context of human/multi-robot teams, the "help me help you" paradigm offers different opportunities. A team of robots can help a human operator accomplish a goal, and a human operator can help a team of robots accomplish the same, or a different, goal. Two scenarios are examined here. First, a team of robots helps a human operator search a remote facility by recognizing objects of interest. Second, the human operator helps the robots improve their position (localization) information by providing quality control feedback.