Goto

Collaborating Authors

 Munje, Michael


Combining Open-box Simulation and Importance Sampling for Tuning Large-Scale Recommenders

arXiv.org Artificial Intelligence

Growing scale of recommender systems require extensive tuning to respond to market dynamics and system changes. We address the challenge of tuning a large-scale ads recommendation platform with multiple continuous parameters influencing key performance indicators (KPIs). Traditional methods like open-box Monte Carlo simulators, while accurate, are computationally expensive due to the high cost of evaluating numerous parameter settings. To mitigate this, we propose a hybrid approach Simulator-Guided Importance Sampling (SGIS) that combines open-box simulation with importance sampling (IS). SGIS leverages the strengths of both techniques: it performs a coarse enumeration over the parameter space to identify promising initial settings and then uses IS to iteratively refine these settings. This approach significantly reduces computational costs while maintaining high accuracy in KPI estimation. We demonstrate the effectiveness of SGIS through simulations as well as real-world experiments, showing that it achieves substantial improvements in KPIs with lower computational overhead compared to traditional methods.


Designs for Enabling Collaboration in Human-Machine Teaming via Interactive and Explainable Systems

arXiv.org Artificial Intelligence

Collaborative robots and machine learning-based virtual agents are increasingly entering the human workspace with the aim of increasing productivity and enhancing safety. Despite this, we show in a ubiquitous experimental domain, Overcooked-AI, that state-of-the-art techniques for human-machine teaming (HMT), which rely on imitation or reinforcement learning, are brittle and result in a machine agent that aims to decouple the machine and human's actions to act independently rather than in a synergistic fashion. To remedy this deficiency, we develop HMT approaches that enable iterative, mixed-initiative team development allowing end-users to interactively reprogram interpretable AI teammates. Our 50-subject study provides several findings that we summarize into guidelines. While all approaches underperform a simple collaborative heuristic (a critical, negative result for learning-based methods), we find that white-box approaches supported by interactive modification can lead to significant team development, outperforming white-box approaches alone, and black-box approaches are easier to train and result in better HMT performance highlighting a tradeoff between explainability and interactivity versus ease-of-training. Together, these findings present three important directions: 1) Improving the ability to generate collaborative agents with white-box models, 2) Better learning methods to facilitate collaboration rather than individualized coordination, and 3) Mixed-initiative interfaces that enable users, who may vary in ability, to improve collaboration.