Goto

Collaborating Authors

 Mullooly, Andrew


Analysis of the Cambridge Multiple-Choice Questions Reading Dataset with a Focus on Candidate Response Distribution

arXiv.org Artificial Intelligence

Multiple choice exams are widely used to assess candidates across a diverse range of domains and tasks. To moderate question quality, newly proposed questions often pass through pre-test evaluation stages before being deployed into real-world exams. Currently, this evaluation process is manually intensive, which can lead to time lags in the question development cycle. Streamlining this process via automation can significantly enhance efficiency, however, there's a current lack of datasets with adequate pre-test analysis information. In this paper we analyse a subset of the public Cambridge Multiple-Choice Questions Reading Database released by Cambridge University Press & Assessment; a multiple-choice comprehension dataset of questions at different target levels, with corresponding candidate selection distributions. We introduce the task of candidate distribution matching, propose several evaluation metrics for the task, and demonstrate that automatic systems trained on RACE++ can be leveraged as baselines for our task. We further demonstrate that these automatic systems can be used for practical pre-test evaluation tasks such as detecting underperforming distractors, where our detection systems can automatically identify poor distractors that few candidates select.


On the application of Large Language Models for language teaching and assessment technology

arXiv.org Artificial Intelligence

The recent release of very large language models such as PaLM and GPT-4 has made an unprecedented impact in the popular media and public consciousness, giving rise to a mixture of excitement and fear as to their capabilities and potential uses, and shining a light on natural language processing research which had not previously received so much attention. The developments offer great promise for education technology, and in this paper we look specifically at the potential for incorporating large language models in AI-driven language teaching and assessment systems. We consider several research areas - content creation and calibration, assessment and feedback - and also discuss the risks and ethical considerations surrounding generative AI in education technology for language learners. Overall we find that larger language models offer improvements over previous models in text generation, opening up routes toward content generation which had not previously been plausible. For text generation they must be prompted carefully and their outputs may need to be reshaped before they are ready for use. For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results according to standard evaluation metrics. For grading it appears that linguistic features established in the literature should still be used for best performance, and for error correction it may be that the models can offer alternative feedback styles which are not measured sensitively with existing methods. In all cases, there is work to be done to experiment with the inclusion of large language models in education technology for language learners, in order to properly understand and report on their capacities and limitations, and to ensure that foreseeable risks such as misinformation and harmful bias are mitigated.