Mullick, Ankan
A Pointer Network-based Approach for Joint Extraction and Detection of Multi-Label Multi-Class Intents
Mullick, Ankan, Bose, Sombit, Nandy, Abhilash, Chaitanya, Gajula Sai, Goyal, Pawan
In task-oriented dialogue systems, intent detection is crucial for interpreting user queries and providing appropriate responses. Existing research primarily addresses simple queries with a single intent, lacking effective systems for handling complex queries with multiple intents and extracting different intent spans. Additionally, there is a notable absence of multilingual, multi-intent datasets. This study addresses three critical tasks: extracting multiple intent spans from queries, detecting multiple intents, and developing a multi-lingual multi-label intent dataset. We introduce a novel multi-label multi-class intent detection dataset (MLMCID-dataset) curated from existing benchmark datasets. We also propose a pointer network-based architecture (MLMCID) to extract intent spans and detect multiple intents with coarse and fine-grained labels in the form of sextuplets. Comprehensive analysis demonstrates the superiority of our pointer network-based system over baseline approaches in terms of accuracy and F1-score across various datasets.
On The Persona-based Summarization of Domain-Specific Documents
Mullick, Ankan, Bose, Sombit, Saha, Rounak, Bhowmick, Ayan Kumar, Goyal, Pawan, Ganguly, Niloy, Dey, Prasenjit, Kokku, Ravi
In an ever-expanding world of domain-specific knowledge, the increasing complexity of consuming, and storing information necessitates the generation of summaries from large information repositories. However, every persona of a domain has different requirements of information and hence their summarization. For example, in the healthcare domain, a persona-based (such as Doctor, Nurse, Patient etc.) approach is imperative to deliver targeted medical information efficiently. Persona-based summarization of domain-specific information by humans is a high cognitive load task and is generally not preferred. The summaries generated by two different humans have high variability and do not scale in cost and subject matter expertise as domains and personas grow. Further, AI-generated summaries using generic Large Language Models (LLMs) may not necessarily offer satisfactory accuracy for different domains unless they have been specifically trained on domain-specific data and can also be very expensive to use in day-to-day operations. Our contribution in this paper is two-fold: 1) We present an approach to efficiently fine-tune a domain-specific small foundation LLM using a healthcare corpus and also show that we can effectively evaluate the summarization quality using AI-based critiquing. 2) We further show that AI-based critiquing has good concordance with Human-based critiquing of the summaries. Hence, such AI-based pipelines to generate domain-specific persona-based summaries can be easily scaled to other domains such as legal, enterprise documents, education etc. in a very efficient and cost-effective manner.
Intent Detection and Entity Extraction from BioMedical Literature
Mullick, Ankan, Gupta, Mukur, Goyal, Pawan
Biomedical queries have become increasingly prevalent in web searches, reflecting the growing interest in accessing biomedical literature. Despite recent research on large-language models (LLMs) motivated by endeavours to attain generalized intelligence, their efficacy in replacing task and domain-specific natural language understanding approaches remains questionable. In this paper, we address this question by conducting a comprehensive empirical evaluation of intent detection and named entity recognition (NER) tasks from biomedical text. We show that Supervised Fine Tuned approaches are still relevant and more effective than general-purpose LLMs. Biomedical transformer models such as PubMedBERT can surpass ChatGPT on NER task with only 5 supervised examples.
Long Dialog Summarization: An Analysis
Mullick, Ankan, Bhowmick, Ayan Kumar, R, Raghav, Kokku, Ravi, Dey, Prasenjit, Goyal, Pawan, Ganguly, Niloy
Dialog summarization has become increasingly important in managing and comprehending large-scale conversations across various domains. This task presents unique challenges in capturing the key points, context, and nuances of multi-turn long conversations for summarization. It is worth noting that the summarization techniques may vary based on specific requirements such as in a shopping-chatbot scenario, the dialog summary helps to learn user preferences, whereas in the case of a customer call center, the summary may involve the problem attributes that a user specified, and the final resolution provided. This work emphasizes the significance of creating coherent and contextually rich summaries for effective communication in various applications. We explore current state-of-the-art approaches for long dialog summarization in different domains and benchmark metrics based evaluations show that one single model does not perform well across various areas for distinct summarization tasks.
MatSciRE: Leveraging Pointer Networks to Automate Entity and Relation Extraction for Material Science Knowledge-base Construction
Mullick, Ankan, Ghosh, Akash, Chaitanya, G Sai, Ghui, Samir, Nayak, Tapas, Lee, Seung-Cheol, Bhattacharjee, Satadeep, Goyal, Pawan
Material science literature is a rich source of factual information about various categories of entities (like materials and compositions) and various relations between these entities, such as conductivity, voltage, etc. Automatically extracting this information to generate a material science knowledge base is a challenging task. In this paper, we propose MatSciRE (Material Science Relation Extractor), a Pointer Network-based encoder-decoder framework, to jointly extract entities and relations from material science articles as a triplet ($entity1, relation, entity2$). Specifically, we target the battery materials and identify five relations to work on - conductivity, coulombic efficiency, capacity, voltage, and energy. Our proposed approach achieved a much better F1-score (0.771) than a previous attempt using ChemDataExtractor (0.716). The overall graphical framework of MatSciRE is shown in Fig 1. The material information is extracted from material science literature in the form of entity-relation triplets using MatSciRE.
Novel Intent Detection and Active Learning Based Classification (Student Abstract)
Mullick, Ankan
Novel intent class detection is an important problem in real world scenario for conversational agents for continuous interaction. Several research works have been done to detect novel intents in a mono-lingual (primarily English) texts and images. But, current systems lack an end-to-end universal framework to detect novel intents across various different languages with less human annotation effort for mis-classified and system rejected samples. This paper proposes NIDAL (Novel Intent Detection and Active Learning based classification), a semi-supervised framework to detect novel intents while reducing human annotation cost. Empirical results on various benchmark datasets demonstrate that this system outperforms the baseline methods by more than 10% margin for accuracy and macro-F1. The system achieves this while maintaining overall annotation cost to be just ~6-10% of the unlabeled data available to the system.
Intent Identification and Entity Extraction for Healthcare Queries in Indic Languages
Mullick, Ankan, Mondal, Ishani, Ray, Sourjyadip, Raghav, R, Chaitanya, G Sai, Goyal, Pawan
Scarcity of data and technological limitations for resource-poor languages in developing countries like India poses a threat to the development of sophisticated NLU systems for healthcare. To assess the current status of various state-of-the-art language models in healthcare, this paper studies the problem by initially proposing two different Healthcare datasets, Indian Healthcare Query Intent-WebMD and 1mg (IHQID-WebMD and IHQID-1mg) and one real world Indian hospital query data in English and multiple Indic languages (Hindi, Bengali, Tamil, Telugu, Marathi and Gujarati) which are annotated with the query intents as well as entities. Our aim is to detect query intents and extract corresponding entities. We perform extensive experiments on a set of models in various realistic settings and explore two scenarios based on the access to English data only (less costly) and access to target language data (more expensive). We analyze context specific practical relevancy through empirical analysis. The results, expressed in terms of overall F1 score show that our approach is practically useful to identify intents and entities.