Goto

Collaborating Authors

 Muller, Urs


Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models

arXiv.org Artificial Intelligence

We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.


The NVIDIA PilotNet Experiments

arXiv.org Artificial Intelligence

Four years ago, an experimental system known as PilotNet became the first NVIDIA system to steer an autonomous car along a roadway. This system represents a departure from the classical approach for self-driving in which the process is manually decomposed into a series of modules, each performing a different task. In PilotNet, on the other hand, a single deep neural network (DNN) takes pixels as input and produces a desired vehicle trajectory as output; there are no distinct internal modules connected by human-designed interfaces. We believe that handcrafted interfaces ultimately limit performance by restricting information flow through the system and that a learned approach, in combination with other artificial intelligence systems that add redundancy, will lead to better overall performing systems. We continue to conduct research toward that goal. This document describes the PilotNet lane-keeping effort, carried out over the past five years by our NVIDIA PilotNet group in Holmdel, New Jersey. Here we present a snapshot of system status in mid-2020 and highlight some of the work done by the PilotNet group.


Off-Road Obstacle Avoidance through End-to-End Learning

Neural Information Processing Systems

We describe a vision-based obstacle avoidance system for off-road mobile robots. The system is trained from end to end to map raw input images to steering angles. It is trained in supervised mode to predict the steering angles provided by a human driver during training runs collected in a wide variety of terrains, weather conditions, lighting conditions, and obstacle types. The robot is a 50cm off-road truck, with two forwardpointing wireless color cameras. A remote computer processes the video and controls the robot via radio. The learning system is a large 6-layer convolutional network whose input is a single left/right pair of unprocessed low-resolution images. The robot exhibits an excellent ability to detect obstacles and navigate around them in real time at speeds of 2 m/s.


Off-Road Obstacle Avoidance through End-to-End Learning

Neural Information Processing Systems

We describe a vision-based obstacle avoidance system for off-road mobile robots.The system is trained from end to end to map raw input images to steering angles. It is trained in supervised mode to predict the steering angles provided by a human driver during training runs collected in a wide variety of terrains, weather conditions, lighting conditions, and obstacle types. The robot is a 50cm off-road truck, with two forwardpointing wirelesscolor cameras. A remote computer processes the video and controls the robot via radio. The learning system is a large 6-layer convolutional network whose input is a single left/right pair of unprocessed low-resolutionimages. The robot exhibits an excellent ability to detect obstacles and navigate around them in real time at speeds of 2 m/s.