Muller, Thomas
Joint Lemmatization and Morphological Tagging with LEMMING
Muller, Thomas, Cotterell, Ryan, Fraser, Alexander, Schütze, Hinrich
We present LEMMING, a modular log-linear model that jointly models lemmatization and tagging and supports the integration of arbitrary global features. It is trainable on corpora annotated with gold standard tags and lemmata and does not rely on morphological dictionaries or analyzers. LEMMING sets the new state of the art in token-based statistical lemmatization on six languages; e.g., for Czech lemmatization, we reduce the error by 60%, from 4.05 to 1.58. We also give empirical evidence that jointly modeling morphological tags and lemmata is mutually beneficial.
Semantic Modelling of Organizational Knowledge as a Basis for Enterprise Data Governance 4.0 -- Application to a Unified Clinical Data Model
Oliveira, Miguel AP, Manara, Stephane, Molé, Bruno, Muller, Thomas, Guillouche, Aurélien, Hesske, Lysann, Jordan, Bruce, Hubert, Gilles, Kulkarni, Chinmay, Jagdev, Pralipta, Berger, Cedric R.
Individuals and organizations cope with an always-growing amount of data, which is heterogeneous in its contents and formats. An adequate data management process yielding data quality and control over its lifecycle is a prerequisite to getting value out of this data and minimizing inherent risks related to multiple usages. Common data governance frameworks rely on people, policies, and processes that fall short of the overwhelming complexity of data. Yet, harnessing this complexity is necessary to achieve high-quality standards. The latter will condition any downstream data usage outcome, including generative artificial intelligence trained on this data. In this paper, we report our concrete experience establishing a simple, cost-efficient framework that enables metadata-driven, agile and (semi-)automated data governance (i.e. Data Governance 4.0). We explain how we implement and use this framework to integrate 25 years of clinical study data at an enterprise scale in a fully productive environment. The framework encompasses both methodologies and technologies leveraging semantic web principles. We built a knowledge graph describing avatars of data assets in their business context, including governance principles. Multiple ontologies articulated by an enterprise upper ontology enable key governance actions such as FAIRification, lifecycle management, definition of roles and responsibilities, lineage across transformations and provenance from source systems. This metadata model is the keystone to data governance 4.0: a semi-automatised data management process that considers the business context in an agile manner to adapt governance constraints to each use case and dynamically tune it based on business changes.
BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Wen, Bowen, Tremblay, Jonathan, Blukis, Valts, Tyree, Stephen, Muller, Thomas, Evans, Alex, Fox, Dieter, Kautz, Jan, Birchfield, Stan
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence, while simultaneously performing neural 3D reconstruction of the object. Our method works for arbitrary rigid objects, even when visual texture is largely absent. The object is assumed to be segmented in the first frame only. No additional information is required, and no assumption is made about the interaction agent. Key to our method is a Neural Object Field that is learned concurrently with a pose graph optimization process in order to robustly accumulate information into a consistent 3D representation capturing both geometry and appearance. A dynamic pool of posed memory frames is automatically maintained to facilitate communication between these threads. Our approach handles challenging sequences with large pose changes, partial and full occlusion, untextured surfaces, and specular highlights. We show results on HO3D, YCBInEOAT, and BEHAVE datasets, demonstrating that our method significantly outperforms existing approaches. Project page: https://bundlesdf.github.io