Muller, Henning
Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge
Imran, Muhammad, Krebs, Jonathan R., Sivaraman, Vishal Balaji, Zhang, Teng, Kumar, Amarjeet, Ueland, Walker R., Fassler, Michael J., Huang, Jinlong, Sun, Xiao, Wang, Lisheng, Shi, Pengcheng, Rokuss, Maximilian, Baumgartner, Michael, Kirchhof, Yannick, Maier-Hein, Klaus H., Isensee, Fabian, Liu, Shuolin, Han, Bing, Nguyen, Bong Thanh, Shin, Dong-jin, Ji-Woo, Park, Choi, Mathew, Uhm, Kwang-Hyun, Ko, Sung-Jea, Lee, Chanwoong, Chun, Jaehee, Kim, Jin Sung, Zhang, Minghui, Zhang, Hanxiao, You, Xin, Gu, Yun, Pan, Zhaohong, Liu, Xuan, Liang, Xiaokun, Tiefenthaler, Markus, Almar-Munoz, Enrique, Schwab, Matthias, Kotyushev, Mikhail, Epifanov, Rostislav, Wodzinski, Marek, Muller, Henning, Qayyum, Abdul, Mazher, Moona, Niederer, Steven A., Wang, Zhiwei, Yang, Kaixiang, Ren, Jintao, Korreman, Stine Sofia, Gao, Yuchong, Zeng, Hongye, Zheng, Haoyu, Zheng, Rui, Yue, Jinghua, Zhou, Fugen, Liu, Bo, Cosman, Alexander, Liang, Muxuan, Zhao, Chang, Upchurch, Gilbert R. Jr., Ma, Jun, Zhou, Yuyin, Cooper, Michol A., Shao, Wei
Multi-class segmentation of the aorta in computed tomography angiography (CTA) scans is essential for diagnosing and planning complex endovascular treatments for patients with aortic dissections. However, existing methods reduce aortic segmentation to a binary problem, limiting their ability to measure diameters across different branches and zones. Furthermore, no open-source dataset is currently available to support the development of multi-class aortic segmentation methods. To address this gap, we organized the AortaSeg24 MICCAI Challenge, introducing the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones. This dataset was designed to facilitate both model development and validation. The challenge attracted 121 teams worldwide, with participants leveraging state-of-the-art frameworks such as nnU-Net and exploring novel techniques, including cascaded models, data augmentation strategies, and custom loss functions. We evaluated the submitted algorithms using the Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD), highlighting the approaches adopted by the top five performing teams. This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms. The annotated dataset, evaluation code, and implementations of the leading methods are publicly available to support further research. All resources can be accessed at https://aortaseg24.grand-challenge.org.
Disentangling Neuron Representations with Concept Vectors
O'Mahony, Laura, Andrearczyk, Vincent, Muller, Henning, Graziani, Mara
Mechanistic interpretability aims to understand how models store representations by breaking down neural networks into interpretable units. However, the occurrence of polysemantic neurons, or neurons that respond to multiple unrelated features, makes interpreting individual neurons challenging. This has led to the search for meaningful vectors, known as concept vectors, in activation space instead of individual neurons. The main contribution of this paper is a method to disentangle polysemantic neurons into concept vectors encapsulating distinct features. Our method can search for fine-grained concepts according to the user's desired level of concept separation. The analysis shows that polysemantic neurons can be disentangled into directions consisting of linear combinations of neurons. Our evaluations show that the concept vectors found encode coherent, human-understandable features.
Unsupervised Method for Intra-patient Registration of Brain Magnetic Resonance Images based on Objective Function Weighting by Inverse Consistency: Contribution to the BraTS-Reg Challenge
Wodzinski, Marek, Jurgas, Artur, Marini, Niccolo, Atzori, Manfredo, Muller, Henning
Registration of brain scans with pathologies is difficult, yet important research area. The importance of this task motivated researchers to organize the BraTS-Reg challenge, jointly with IEEE ISBI 2022 and MICCAI 2022 conferences. The organizers introduced the task of aligning pre-operative to follow-up magnetic resonance images of glioma. The main difficulties are connected with the missing data leading to large, nonrigid, and noninvertible deformations. In this work, we describe our contributions to both the editions of the BraTS-Reg challenge. The proposed method is based on combined deep learning and instance optimization approaches. First, the instance optimization enriches the state-of-the-art LapIRN method to improve the generalizability and fine-details preservation. Second, an additional objective function weighting is introduced, based on the inverse consistency. The proposed method is fully unsupervised and exhibits high registration quality and robustness. The quantitative results on the external validation set are: (i) IEEE ISBI 2022 edition: 1.85, and 0.86, (ii) MICCAI 2022 edition: 1.71, and 0.86, in terms of the mean of median absolute error and robustness respectively. The method scored the 1st place during the IEEE ISBI 2022 version of the challenge and the 3rd place during the MICCAI 2022. Future work could transfer the inverse consistency-based weighting directly into the deep network training.