Not enough data to create a plot.
Try a different view from the menu above.
Mukherjee, Animesh
CrowdCounter: A benchmark type-specific multi-target counterspeech dataset
Saha, Punyajoy, Datta, Abhilash, Jana, Abhik, Mukherjee, Animesh
Counterspeech presents a viable alternative to banning or suspending users for hate speech while upholding freedom of expression. However, writing effective counterspeech is challenging for moderators/users. Hence, developing suggestion tools for writing counterspeech is the need of the hour. One critical challenge in developing such a tool is the lack of quality and diversity of the responses in the existing datasets. Hence, we introduce a new dataset - CrowdCounter containing 3,425 hate speech-counterspeech pairs spanning six different counterspeech types (empathy, humor, questioning, warning, shaming, contradiction), which is the first of its kind. The design of our annotation platform itself encourages annotators to write type-specific, non-redundant and high-quality counterspeech. We evaluate two frameworks for generating counterspeech responses - vanilla and type-controlled prompts - across four large language models. In terms of metrics, we evaluate the responses using relevance, diversity and quality. We observe that Flan-T5 is the best model in the vanilla framework across different models. Type-specific prompts enhance the relevance of the responses, although they might reduce the language quality. DialoGPT proves to be the best at following the instructions and generating the type-specific counterspeech accurately.
SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models
Banerjee, Somnath, Tripathy, Soham, Layek, Sayan, Kumar, Shanu, Mukherjee, Animesh, Hazra, Rima
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.
Cost-Performance Optimization for Processing Low-Resource Language Tasks Using Commercial LLMs
Nag, Arijit, Mukherjee, Animesh, Ganguly, Niloy, Chakrabarti, Soumen
Large Language Models (LLMs) exhibit impressive zero/few-shot inference and generation quality for high-resource languages (HRLs). A few of them have been trained on low-resource languages (LRLs) and give decent performance. Owing to the prohibitive costs of training LLMs, they are usually used as a network service, with the client charged by the count of input and output tokens. The number of tokens strongly depends on the script and language, as well as the LLM's subword vocabulary. We show that LRLs are at a pricing disadvantage, because the well-known LLMs produce more tokens for LRLs than HRLs. This is because most currently popular LLMs are optimized for HRL vocabularies. Our objective is to level the playing field: reduce the cost of processing LRLs in contemporary LLMs while ensuring that predictive and generative qualities are not compromised. As means to reduce the number of tokens processed by the LLM, we consider code-mixing, translation, and transliteration of LRLs to HRLs. We perform an extensive study using the IndicXTREME classification and six generative tasks dataset, covering 15 Indic and 3 other languages, while using GPT-4 (one of the costliest LLM services released so far) as a commercial LLM. We observe and analyze interesting patterns involving token count, cost, and quality across a multitude of languages and tasks. We show that choosing the best policy to interact with the LLM can reduce cost by 90% while giving better or comparable performance compared to communicating with the LLM in the original LRL.
On Zero-Shot Counterspeech Generation by LLMs
Saha, Punyajoy, Agrawal, Aalok, Jana, Abhik, Biemann, Chris, Mukherjee, Animesh
With the emergence of numerous Large Language Models (LLM), the usage of such models in various Natural Language Processing (NLP) applications is increasing extensively. Counterspeech generation is one such key task where efforts are made to develop generative models by fine-tuning LLMs with hatespeech - counterspeech pairs, but none of these attempts explores the intrinsic properties of large language models in zero-shot settings. In this work, we present a comprehensive analysis of the performances of four LLMs namely GPT-2, DialoGPT, ChatGPT and FlanT5 in zero-shot settings for counterspeech generation, which is the first of its kind. For GPT-2 and DialoGPT, we further investigate the deviation in performance with respect to the sizes (small, medium, large) of the models. On the other hand, we propose three different prompting strategies for generating different types of counterspeech and analyse the impact of such strategies on the performance of the models. Our analysis shows that there is an improvement in generation quality for two datasets (17%), however the toxicity increase (25%) with increase in model size. Considering type of model, GPT-2 and FlanT5 models are significantly better in terms of counterspeech quality but also have high toxicity as compared to DialoGPT. ChatGPT are much better at generating counter speech than other models across all metrics. In terms of prompting, we find that our proposed strategies help in improving counter speech generation across all the models.
How (un)ethical are instruction-centric responses of LLMs? Unveiling the vulnerabilities of safety guardrails to harmful queries
Banerjee, Somnath, Layek, Sayan, Hazra, Rima, Mukherjee, Animesh
In this study, we tackle a growing concern around the safety and ethical use of large language models (LLMs). Despite their potential, these models can be tricked into producing harmful or unethical content through various sophisticated methods, including 'jailbreaking' techniques and targeted manipulation. Our work zeroes in on a specific issue: to what extent LLMs can be led astray by asking them to generate responses that are instruction-centric such as a pseudocode, a program or a software snippet as opposed to vanilla text. To investigate this question, we introduce TechHazardQA, a dataset containing complex queries which should be answered in both text and instruction-centric formats (e.g., pseudocodes), aimed at identifying triggers for unethical responses. We query a series of LLMs -- Llama-2-13b, Llama-2-7b, Mistral-V2 and Mistral 8X7B -- and ask them to generate both text and instruction-centric responses. For evaluation we report the harmfulness score metric as well as judgements from GPT-4 and humans. Overall, we observe that asking LLMs to produce instruction-centric responses enhances the unethical response generation by ~2-38% across the models. As an additional objective, we investigate the impact of model editing using the ROME technique, which further increases the propensity for generating undesirable content. In particular, asking edited LLMs to generate instruction-centric responses further increases the unethical response generation by ~3-16% across the different models.
InfFeed: Influence Functions as a Feedback to Improve the Performance of Subjective Tasks
Banerjee, Somnath, Sarkar, Maulindu, Saha, Punyajoy, Mathew, Binny, Mukherjee, Animesh
Recently, influence functions present an apparatus for achieving explainability for deep neural models by quantifying the perturbation of individual train instances that might impact a test prediction. Our objectives in this paper are twofold. First we incorporate influence functions as a feedback into the model to improve its performance. Second, in a dataset extension exercise, using influence functions to automatically identify data points that have been initially `silver' annotated by some existing method and need to be cross-checked (and corrected) by annotators to improve the model performance. To meet these objectives, in this paper, we introduce InfFeed, which uses influence functions to compute the influential instances for a target instance. Toward the first objective, we adjust the label of the target instance based on its influencer(s) label. In doing this, InfFeed outperforms the state-of-the-art baselines (including LLMs) by a maximum macro F1-score margin of almost 4% for hate speech classification, 3.5% for stance classification, and 3% for irony and 2% for sarcasm detection. Toward the second objective we show that manually re-annotating only those silver annotated data points in the extension set that have a negative influence can immensely improve the model performance bringing it very close to the scenario where all the data points in the extension set have gold labels. This allows for huge reduction of the number of data points that need to be manually annotated since out of the silver annotated extension dataset, the influence function scheme picks up ~1/1000 points that need manual correction.
Mask-up: Investigating Biases in Face Re-identification for Masked Faces
Jaiswal, Siddharth D, Verma, Ankit Kr., Mukherjee, Animesh
AI based Face Recognition Systems (FRSs) are now widely distributed and deployed as MLaaS solutions all over the world, moreso since the COVID-19 pandemic for tasks ranging from validating individuals' faces while buying SIM cards to surveillance of citizens. Extensive biases have been reported against marginalized groups in these systems and have led to highly discriminatory outcomes. The post-pandemic world has normalized wearing face masks but FRSs have not kept up with the changing times. As a result, these systems are susceptible to mask based face occlusion. In this study, we audit four commercial and nine open-source FRSs for the task of face re-identification between different varieties of masked and unmasked images across five benchmark datasets (total 14,722 images). These simulate a realistic validation/surveillance task as deployed in all major countries around the world. Three of the commercial and five of the open-source FRSs are highly inaccurate; they further perpetuate biases against non-White individuals, with the lowest accuracy being 0%. A survey for the same task with 85 human participants also results in a low accuracy of 40%. Thus a human-in-the-loop moderation in the pipeline does not alleviate the concerns, as has been frequently hypothesized in literature. Our large-scale study shows that developers, lawmakers and users of such services need to rethink the design principles behind FRSs, especially for the task of face re-identification, taking cognizance of observed biases.
GRAFFORD: A Benchmark Dataset for Testing the Knowledge of Object Affordances of Language and Vision Models
Adak, Sayantan, Agrawal, Daivik, Mukherjee, Animesh, Aditya, Somak
We investigate the knowledge of object affordances in pre-trained language models (LMs) and pre-trained Vision-Language models (VLMs). Transformers-based large pre-trained language models (PTLM) learn contextual representation from massive amounts of unlabeled text and are shown to perform impressively in downstream NLU tasks. In parallel, a growing body of literature shows that PTLMs fail inconsistently and non-intuitively, showing a lack of reasoning and grounding. To take a first step toward quantifying the effect of grounding (or lack thereof), we curate a novel and comprehensive dataset of object affordances -- GrAFFORD, characterized by 15 affordance classes. Unlike affordance datasets collected in vision and language domains, we annotate in-the-wild sentences with objects and affordances. Experimental results reveal that PTLMs exhibit limited reasoning abilities when it comes to uncommon object affordances. We also observe that pre-trained VLMs do not necessarily capture object affordances effectively. Through few-shot fine-tuning, we demonstrate improvement in affordance knowledge in PTLMs and VLMs. Our research contributes a novel dataset for language grounding tasks, and presents insights into LM capabilities, advancing the understanding of object affordances. Codes and data are available at https://github.com/sayantan11995/Affordance
Low-Resource Counterspeech Generation for Indic Languages: The Case of Bengali and Hindi
Das, Mithun, Pandey, Saurabh Kumar, Sethi, Shivansh, Saha, Punyajoy, Mukherjee, Animesh
With the rise of online abuse, the NLP community has begun investigating the use of neural architectures to generate counterspeech that can "counter" the vicious tone of such abusive speech and dilute/ameliorate their rippling effect over the social network. However, most of the efforts so far have been primarily focused on English. To bridge the gap for low-resource languages such as Bengali and Hindi, we create a benchmark dataset of 5,062 abusive speech/counterspeech pairs, of which 2,460 pairs are in Bengali and 2,602 pairs are in Hindi. We implement several baseline models considering various interlingual transfer mechanisms with different configurations to generate suitable counterspeech to set up an effective benchmark. We observe that the monolingual setup yields the best performance. Further, using synthetic transfer, language models can generate counterspeech to some extent; specifically, we notice that transferability is better when languages belong to the same language family.
Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context
Banerjee, Somnath, Sahoo, Amruit, Layek, Sayan, Dutta, Avik, Hazra, Rima, Mukherjee, Animesh
In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.