Goto

Collaborating Authors

 Mujumdar, Shashank


Identifying Semantically Difficult Samples to Improve Text Classification

arXiv.org Artificial Intelligence

In this paper, we investigate the effect of addressing difficult samples from a given text dataset on the downstream text classification task. We define difficult samples as being non-obvious cases for text classification by analysing them in the semantic embedding space; specifically - (i) semantically similar samples that belong to different classes and (ii) semantically dissimilar samples that belong to the same class. We propose a penalty function to measure the overall difficulty score of every sample in the dataset. We conduct exhaustive experiments on 13 standard datasets to show a consistent improvement of up to 9% and discuss qualitative results to show effectiveness of our approach in identifying difficult samples for a text classification model.


Towards a Multi-modal, Multi-task Learning based Pre-training Framework for Document Representation Learning

arXiv.org Artificial Intelligence

In this paper, we propose a multi-task learning-based framework that utilizes a combination of self-supervised and supervised pre-training tasks to learn a generic document representation. We design the network architecture and the pre-training tasks to incorporate the multi-modal document information across text, layout, and image dimensions and allow the network to work with multi-page documents. We showcase the applicability of our pre-training framework on a variety of different real-world document tasks such as document classification, document information extraction, and document retrieval. We conduct exhaustive experiments to compare performance against different ablations of our framework and state-of-the-art baselines. We discuss the current limitations and next steps for our work.


Semantic Understanding for Contextual In-Video Advertising

AAAI Conferences

With the increasing consumer base of online video content, it is important for advertisers to understand the video context when targeting video ads to consumers. To improve the consumer experience and quality of ads, key factors need to be considered such as (i) ad relevance to video content (ii) where and how video ads are placed, and (iii) non-intrusive user experience. We propose a framework to semantically understand the video content for better ad recommendation that ensure these criteria.