Goto

Collaborating Authors

 Mues, Christophe


A Distributionally Robust Optimisation Approach to Fair Credit Scoring

arXiv.org Artificial Intelligence

Credit scoring has been catalogued by the European Commission and the Executive Office of the US President as a high-risk classification task, a key concern being the potential harms of making loan approval decisions based on models that would be biased against certain groups. To address this concern, recent credit scoring research has considered a range of fairness-enhancing techniques put forward by the machine learning community to reduce bias and unfair treatment in classification systems. While the definition of fairness or the approach they follow to impose it may vary, most of these techniques, however, disregard the robustness of the results. This can create situations where unfair treatment is effectively corrected in the training set, but when producing out-of-sample classifications, unfair treatment is incurred again. Instead, in this paper, we will investigate how to apply Distributionally Robust Optimisation (DRO) methods to credit scoring, thereby empirically evaluating how they perform in terms of fairness, ability to classify correctly, and the robustness of the solution against changes in the marginal proportions. In so doing, we find DRO methods to provide a substantial improvement in terms of fairness, with almost no loss in performance. These results thus indicate that DRO can improve fairness in credit scoring, provided that further advances are made in efficiently implementing these systems. In addition, our analysis suggests that many of the commonly used fairness metrics are unsuitable for a credit scoring setting, as they depend on the choice of classification threshold.


Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction

arXiv.org Artificial Intelligence

Whereas traditional credit scoring tends to employ only individual borrower- or loan-level predictors, it has been acknowledged for some time that connections between borrowers may result in default risk propagating over a network. In this paper, we present a model for credit risk assessment leveraging a dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network, each layer reflecting a different source of network connection. We test our methodology in a behavioural credit scoring context using a dataset provided by U.S. mortgage financier Freddie Mac, in which different types of connections arise from the geographical location of the borrower and their choice of mortgage provider. The proposed model considers both types of connections and the evolution of these connections over time. We enhance the model by using a custom attention mechanism that weights the different time snapshots according to their importance. After testing multiple configurations, a model with GAT, LSTM, and the attention mechanism provides the best results. Empirical results demonstrate that, when it comes to predicting probability of default for the borrowers, our proposed model brings both better results and novel insights for the analysis of the importance of connections and timestamps, compared to traditional methods.


A transformer-based model for default prediction in mid-cap corporate markets

arXiv.org Artificial Intelligence

In this paper, we study mid-cap companies, i.e. publicly traded companies with less than US $10 billion in market capitalisation. Using a large dataset of US mid-cap companies observed over 30 years, we look to predict the default probability term structure over the medium term and understand which data sources (i.e. fundamental, market or pricing data) contribute most to the default risk. Whereas existing methods typically require that data from different time periods are first aggregated and turned into cross-sectional features, we frame the problem as a multi-label time-series classification problem. We adapt transformer models, a state-of-the-art deep learning model emanating from the natural language processing domain, to the credit risk modelling setting. We also interpret the predictions of these models using attention heat maps. To optimise the model further, we present a custom loss function for multi-label classification and a novel multi-channel architecture with differential training that gives the model the ability to use all input data efficiently. Our results show the proposed deep learning architecture's superior performance, resulting in a 13% improvement in AUC (Area Under the receiver operating characteristic Curve) over traditional models. We also demonstrate how to produce an importance ranking for the different data sources and the temporal relationships using a Shapley approach specific to these models.


Deep residential representations: Using unsupervised learning to unlock elevation data for geo-demographic prediction

arXiv.org Artificial Intelligence

LiDAR (short for "Light Detection And Ranging" or "Laser Imaging, Detection, And Ranging") technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes. To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains. However, the geographically granular and open-source nature of this data also lends itself to an array of societal, organizational and business applications where geo-demographic type data is utilised. Arguably, the complexity involved in processing this multi-dimensional data has thus far restricted its broader adoption. In this paper, we propose a series of convenient task-agnostic tile elevation embeddings to address this challenge, using recent advances from unsupervised Deep Learning. We test the potential of our embeddings by predicting seven English indices of deprivation (2019) for small geographies in the Greater London area. These indices cover a range of socio-economic outcomes and serve as a proxy for a wide variety of downstream tasks to which the embeddings can be applied. We consider the suitability of this data not just on its own but also as an auxiliary source of data in combination with demographic features, thus providing a realistic use case for the embeddings. Having trialled various model/embedding configurations, we find that our best performing embeddings lead to Root-Mean-Squared-Error (RMSE) improvements of up to 21% over using standard demographic features alone. We also demonstrate how our embedding pipeline, using Deep Learning combined with K-means clustering, produces coherent tile segments which allow the latent embedding features to be interpreted.