Mueller, Maximilian
How to train your ViT for OOD Detection
Mueller, Maximilian, Hein, Matthias
VisionTransformers have been shown to be powerful out-of-distribution detectors for ImageNet-scale settings when finetuned from publicly available checkpoints, often outperforming other model types on popular benchmarks. In this work, we investigate the impact of both the pretraining and finetuning scheme on the performance of ViTs on this task by analyzing a large pool of models. We find that the exact type of pretraining has a strong impact on which method works well and on OOD detection performance in general. We further show that certain training schemes might only be effective for a specific type of out-distribution, but not in general, and identify a best-practice training recipe. Deep neural networks have undeniably achieved remarkable success across a spectrum of realworld applications, showcasing outstanding performance. Nevertheless, they often exhibit unforeseen behaviour when confronted with unknown situations like receiving an input that is not related to the task it has been trained on.
Normalization Layers Are All That Sharpness-Aware Minimization Needs
Mueller, Maximilian, Vlaar, Tiffany, Rolnick, David, Hein, Matthias
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in various settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.