Goto

Collaborating Authors

 Mueller, Jonas


Identifying Incorrect Annotations in Multi-Label Classification Data

arXiv.org Artificial Intelligence

In multi-label classification, each example in a dataset may be annotated as belonging to one or more classes (or none of the classes). Example applications include image (or document) tagging where each possible tag either applies to a particular image (or document) or not. With many possible classes to consider, data annotators are likely to make errors when labeling such data in practice. Here we consider algorithms for finding mislabeled examples in multi-label classification datasets. We propose an extension of the Confident Learning framework to this setting, as well as a label quality score that ranks examples with label errors much higher than those which are correctly labeled. Both approaches can utilize any trained classifier. After demonstrating that our methodology empirically outperforms other algorithms for label error detection, we apply our approach to discover many label errors in the CelebA image tagging dataset.


Back to the Basics: Revisiting Out-of-Distribution Detection Baselines

arXiv.org Machine Learning

We study simple methods for out-of-distribution (OOD) image detection that are compatible with any already trained classifier, relying on only its predictions or learned representations. Evaluating the OOD detection performance of various methods when utilized with ResNet-50 and Swin Transformer models, we find methods that solely consider the model's predictions can be easily outperformed by also considering the learned representations. Based on our analysis, we advocate for a dead-simple approach that has been neglected in other studies: simply flag as OOD images whose average distance to their K nearest neighbors is large (in the representation space of an image classifier trained on the in-distribution data).


Benchmarking Multimodal AutoML for Tabular Data with Text Fields

arXiv.org Machine Learning

We consider the use of automated supervised learning systems for data tables that not only contain numeric/categorical columns, but one or more text fields as well. Here we assemble 18 multimodal data tables that each contain some text fields and stem from a real business application. Our publicly-available benchmark enables researchers to comprehensively evaluate their own methods for supervised learning with numeric, categorical, and text features. To ensure that any single modeling strategy which performs well over all 18 datasets will serve as a practical foundation for multimodal text/tabular AutoML, the diverse datasets in our benchmark vary greatly in: sample size, problem types (a mix of classification and regression tasks), number of features (with the number of text columns ranging from 1 to 28 between datasets), as well as how the predictive signal is decomposed between text vs. numeric/categorical features (and predictive interactions thereof). Over this benchmark, we evaluate various straightforward pipelines to model such data, including standard two-stage approaches where NLP is used to featurize the text such that AutoML for tabular data can then be applied. Compared with human data science teams, the fully automated methodology that performed best on our benchmark (stack ensembling a multimodal Transformer with various tree models) also manages to rank 1st place when fit to the raw text/tabular data in two MachineHack prediction competitions and 2nd place (out of 2380 teams) in Kaggle's Mercari Price Suggestion Challenge.


Deep Learning for Functional Data Analysis with Adaptive Basis Layers

arXiv.org Machine Learning

Despite their widespread success, the application of deep neural networks to functional data remains scarce today. The infinite dimensionality of functional data means standard learning algorithms can be applied only after appropriate dimension reduction, typically achieved via basis expansions. Currently, these bases are chosen a priori without the information for the task at hand and thus may not be effective for the designated task. We instead propose to adaptively learn these bases in an end-to-end fashion. We introduce neural networks that employ a new Basis Layer whose hidden units are each basis functions themselves implemented as a micro neural network. Our architecture learns to apply parsimonious dimension reduction to functional inputs that focuses only on information relevant to the target rather than irrelevant variation in the input function. Across numerous classification/regression tasks with functional data, our method empirically outperforms other types of neural networks, and we prove that our approach is statistically consistent with low generalization error. Code is available at: \url{https://github.com/jwyyy/AdaFNN}.


Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

arXiv.org Artificial Intelligence

We algorithmically identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of 3.4% errors across the 10 datasets, where for example 2916 label errors comprise 6% of the ImageNet validation set. Putative label errors are found using confident learning and then human-validated via crowdsourcing (54% of the algorithmically-flagged candidates are indeed erroneously labeled). Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by 5%. Traditionally, ML practitioners choose which model to deploy based on test accuracy -- our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets.


Deep Quantile Aggregation

arXiv.org Machine Learning

Conditional quantile estimation is a key statistical learning challenge motivated by the need to quantify uncertainty in predictions or to model a diverse population without being overly reductive. As such, many models have been developed for this problem. Adopting a meta viewpoint, we propose a general framework (inspired by neural network optimization) for aggregating any number of conditional quantile models in order to boost predictive accuracy. We consider weighted ensembling strategies of increasing flexibility where the weights may vary over individual models, quantile levels, and feature values. An appeal of our approach is its portability: we ensure that estimated quantiles at adjacent levels do not cross by applying simple transformations through which gradients can be backpropagated, and this allows us to leverage the modern deep learning toolkit for building quantile ensembles. Our experiments confirm that ensembling can lead to big gains in accuracy, even when the constituent models are themselves powerful and flexible.


Continuous Doubly Constrained Batch Reinforcement Learning

arXiv.org Machine Learning

Reliant on too many experiments to learn good actions, current Reinforcement Learning (RL) algorithms have limited applicability in real-world settings, which can be too expensive to allow exploration. We propose an algorithm for batch RL, where effective policies are learned using only a fixed offline dataset instead of online interactions with the environment. The limited data in batch RL produces inherent uncertainty in value estimates of states/actions that were insufficiently represented in the training data. This leads to particularly severe extrapolation when our candidate policies diverge from one that generated the data. We propose to mitigate this issue via two straightforward penalties: a policy-constraint to reduce this divergence and a value-constraint that discourages overly optimistic estimates. Over a comprehensive set of 32 continuous-action batch RL benchmarks, our approach compares favorably to state-of-the-art methods, regardless of how the offline data were collected.


Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation

arXiv.org Machine Learning

Automated machine learning (AutoML) can produce complex model ensembles by stacking, bagging, and boosting many individual models like trees, deep networks, and nearest neighbor estimators. While highly accurate, the resulting predictors are large, slow, and opaque as compared to their constituents. To improve the deployment of AutoML on tabular data, we propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks. At the heart of our approach is a data augmentation strategy based on Gibbs sampling from a self-attention pseudolikelihood estimator. Across 30 datasets spanning regression and binary/multiclass classification tasks, FAST-DAD distillation produces significantly better individual models than one obtains through standard training on the original data. Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.


Recognizing Variables from their Data via Deep Embeddings of Distributions

arXiv.org Machine Learning

--A key obstacle in automated analytics and meta-learning is the inability to recognize when different datasets contain measurements of the same variable. Because provided attribute labels are often uninformative in practice, this task may be more robustly addressed by leveraging the data values themselves rather than just relying on their arbitrarily selected variable names. Here, we present a computationally efficient method to identify high-confidence variable matches between a given set of data values and a large repository of previously encountered datasets. Our approach enjoys numerous advantages over distributional similarity based techniques because we leverage learned vector embeddings of datasets which adaptively account for naturalforms of data variation encountered in practice. Based on the neural architecture of deep sets, our embeddings can be computed for both numeric and string data. In dataset search and schema matching tasks, our methods outperform standard statistical techniques and we find that the learned embeddings generalize well to new data sources. I NTRODUCTION Emerging ideas in automated analytics [1] and meta-learning across many datasets [2] offer great promise for improving both performance and tedium in the data science pipeline. However, a major obstacle remains: such methods generally have no knowledge about what type of real-world entity (i.e. In contrast, human analysts presented with new data often utilize this knowledge to recall previously-encountered datasets that contain the same sort of variables. Reviewing past experience with how different algorithms fared on these same variables enables a person to quickly leverage methods that work well for this type of data (e.g.


Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep Ensembles

arXiv.org Machine Learning

The inaccuracy of neural network models on inputs that do not stem from the training data distribution is both problematic and at times unrecognized. Model uncertainty estimation can address this issue, where uncertainty estimates are often based on the variation in predictions produced by a diverse ensemble of models applied to the same input. Here we describe Maximize Overall Diversity (MOD), a straightforward approach to improve ensemble-based uncertainty estimates by encouraging larger overall diversity in ensemble predictions across all possible inputs that might be encountered in the future. When applied to various neural network ensembles, MOD significantly improves predictive performance for out-of-distribution test examples without sacrificing in-distribution performance on 38 Protein-DNA binding regression datasets, 9 UCI datasets, and the IMDB-Wiki image dataset. Across many Bayesian optimization tasks, the performance of UCB acquisition is also greatly improved by leveraging MOD uncertainty estimates.