Mu, Tingting
Group-Agent Reinforcement Learning with Heterogeneous Agents
Wu, Kaiyue, Zeng, Xiao-Jun, Mu, Tingting
Group-agent reinforcement learning (GARL) is a newly arising learning scenario, where multiple reinforcement learning agents study together in a group, sharing knowledge in an asynchronous fashion. The goal is to improve the learning performance of each individual agent. Under a more general heterogeneous setting where different agents learn using different algorithms, we advance GARL by designing novel and effective group-learning mechanisms. They guide the agents on whether and how to learn from action choices from the others, and allow the agents to adopt available policy and value function models sent by another agent if they perform better. We have conducted extensive experiments on a total of 43 different Atari 2600 games to demonstrate the superior performance of the proposed method. After the group learning, among the 129 agents examined, 96% are able to achieve a learning speed-up, and 72% are able to learn over 100 times faster. Also, around 41% of those agents have achieved a higher accumulated reward score by learning in less than 5% of the time steps required by a single agent when learning on its own.
Precise, Fast, and Low-cost Concept Erasure in Value Space: Orthogonal Complement Matters
Wang, Yuan, Li, Ouxiang, Mu, Tingting, Hao, Yanbin, Liu, Kuien, Wang, Xiang, He, Xiangnan
The success of text-to-image generation enabled by diffuion models has imposed an urgent need to erase unwanted concepts, e.g., copyrighted, offensive, and unsafe ones, from the pre-trained models in a precise, timely, and low-cost manner. The twofold demand of concept erasure requires a precise removal of the target concept during generation (i.e., erasure efficacy), while a minimal impact on non-target content generation (i.e., prior preservation). Existing methods are either computationally costly or face challenges in maintaining an effective balance between erasure efficacy and prior preservation. To improve, we propose a precise, fast, and low-cost concept erasure method, called Adaptive Vaule Decomposer (AdaVD), which is training-free. This method is grounded in a classical linear algebraic orthogonal complement operation, implemented in the value space of each cross-attention layer within the UNet of diffusion models. An effective shift factor is designed to adaptively navigate the erasure strength, enhancing prior preservation without sacrificing erasure efficacy. Extensive experimental results show that the proposed AdaVD is effective at both single and multiple concept erasure, showing a 2- to 10-fold improvement in prior preservation as compared to the second best, meanwhile achieving the best or near best erasure efficacy, when comparing with both training-based and training-free state of the arts. AdaVD supports a series of diffusion models and downstream image generation tasks, the code is available on the project page: https://github.com/WYuan1001/AdaVD
Scalable Lipschitz Estimation for CNNs
Sulehman, Yusuf, Mu, Tingting
Estimating the Lipschitz constant of deep neural networks is of growing interest as it is useful for informing on generalisability and adversarial robustness. Convolutional neural networks (CNNs) in particular, underpin much of the recent success in computer vision related applications. However, although existing methods for estimating the Lipschitz constant can be tight, they have limited scalability when applied to CNNs. To tackle this, we propose a novel method to accelerate Lipschitz constant estimation for CNNs. The core idea is to divide a large convolutional block via a joint layer and width-wise partition, into a collection of smaller blocks. We prove an upper-bound on the Lipschitz constant of the larger block in terms of the Lipschitz constants of the smaller blocks. Through varying the partition factor, the resulting method can be adjusted to prioritise either accuracy or scalability and permits parallelisation. We demonstrate an enhanced scalability and comparable accuracy to existing baselines through a range of experiments.
A Unified Theory of Diversity in Ensemble Learning
Wood, Danny, Mu, Tingting, Webb, Andrew, Reeve, Henry, Lujan, Mikel, Brown, Gavin
We present a theory of ensemble diversity, explaining the nature of diversity for a wide range of supervised learning scenarios. This challenge, of understanding ensemble diversity, has been referred to as the "holy grail" of ensemble learning, an open research issue for over 30 years. Our framework reveals that diversity is in fact a hidden dimension in the bias-variance decomposition of the ensemble loss. We prove a family of exact bias-variance-diversity decompositions, for both regression and classification, e.g., squared, cross-entropy, and Poisson losses. For losses where an additive bias-variance decomposition is not available (e.g., 0/1 loss) we present an alternative approach, which precisely quantifies the effects of diversity, turning out to be dependent on the label distribution. Experiments show how we can use our framework to understand the diversity-encouraging mechanisms of popular methods: Bagging, Boosting, and Random Forests.
Understanding and Improving Ensemble Adversarial Defense
Deng, Yian, Mu, Tingting
The strategy of ensemble has become popular in adversarial defense, which trains multiple base classifiers to defend against adversarial attacks in a cooperative manner. Despite the empirical success, theoretical explanations on why an ensemble of adversarially trained classifiers is more robust than single ones remain unclear. To fill in this gap, we develop a new error theory dedicated to understanding ensemble adversarial defense, demonstrating a provable 0-1 loss reduction on challenging sample sets in an adversarial defense scenario. Guided by this theory, we propose an effective approach to improve ensemble adversarial defense, named interactive global adversarial training (iGAT). The proposal includes (1) a probabilistic distributing rule that selectively allocates to different base classifiers adversarial examples that are globally challenging to the ensemble, and (2) a regularization term to rescue the severest weaknesses of the base classifiers. Being tested over various existing ensemble adversarial defense techniques, iGAT is capable of boosting their performance by increases up to 17% evaluated using CIFAR10 and CIFAR100 datasets under both white-box and black-box attacks.
Physics-Driven ML-Based Modelling for Correcting Inverse Estimation
Kang, Ruiyuan, Mu, Tingting, Liatsis, Panos, Kyritsis, Dimitrios C.
When deploying machine learning estimators in science and engineering (SAE) domains, it is critical to avoid failed estimations that can have disastrous consequences, e.g., in aero engine design. This work focuses on detecting and correcting failed state estimations before adopting them in SAE inverse problems, by utilizing simulations and performance metrics guided by physical laws. We suggest to flag a machine learning estimation when its physical model error exceeds a feasible threshold, and propose a novel approach, GEESE, to correct it through optimization, aiming at delivering both low error and high efficiency. The key designs of GEESE include (1) a hybrid surrogate error model to provide fast error estimations to reduce simulation cost and to enable gradient based backpropagation of error feedback, and (2) two generative models to approximate the probability distributions of the candidate states for simulating the exploitation and exploration behaviours. All three models are constructed as neural networks. GEESE is tested on three real-world SAE inverse problems and compared to a number of state-of-the-art optimization/search approaches. Results show that it fails the least number of times in terms of finding a feasible state correction, and requires physical evaluations less frequently in general.
Bi-directional Distribution Alignment for Transductive Zero-Shot Learning
Wang, Zhicai, Hao, Yanbin, Mu, Tingting, Li, Ouxiang, Wang, Shuo, He, Xiangnan
It is well-known that zero-shot learning (ZSL) can suffer severely from the problem of domain shift, where the true and learned data distributions for the unseen classes do not match. Although transductive ZSL (TZSL) attempts to improve this by allowing the use of unlabelled examples from the unseen classes, there is still a high level of distribution shift. We propose a novel TZSL model (named as Bi-VAEGAN), which largely improves the shift by a strengthened distribution alignment between the visual and auxiliary spaces. The key proposal of the model design includes (1) a bi-directional distribution alignment, (2) a simple but effective L_2-norm based feature normalization approach, and (3) a more sophisticated unseen class prior estimation approach. In benchmark evaluation using four datasets, Bi-VAEGAN achieves the new state of the arts under both the standard and generalized TZSL settings. Code could be found at https://github.com/Zhicaiwww/Bi-VAEGAN
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Deng, Yian, Mu, Tingting
This work is on constrained large-scale non-convex optimization where the constraint set implies a manifold structure. Solving such problems is important in a multitude of fundamental machine learning tasks. Recent advances on Riemannian optimization have enabled the convenient recovery of solutions by adapting unconstrained optimization algorithms over manifolds. However, it remains challenging to scale up and meanwhile maintain stable convergence rates and handle saddle points. We propose a new second-order Riemannian optimization algorithm, aiming at improving convergence rate and reducing computational cost. It enhances the Riemannian trust-region algorithm that explores curvature information to escape saddle points through a mixture of subsampling and cubic regularization techniques. We conduct rigorous analysis to study the convergence behavior of the proposed algorithm. We also perform extensive experiments to evaluate it based on two general machine learning tasks using multiple datasets. The proposed algorithm exhibits improved computational speed and convergence behavior compared to a large set of state-of-the-art Riemannian optimization algorithms.
Ontology-based n-ball Concept Embeddings Informing Few-shot Image Classification
Jayathilaka, Mirantha, Mu, Tingting, Sattler, Uli
We propose a novel framework named ViOCE that integrates ontology-based background knowledge in the form of $n$-ball concept embeddings into a neural network based vision architecture. The approach consists of two components - converting symbolic knowledge of an ontology into continuous space by learning n-ball embeddings that capture properties of subsumption and disjointness, and guiding the training and inference of a vision model using the learnt embeddings. We evaluate ViOCE using the task of few-shot image classification, where it demonstrates superior performance on two standard benchmarks.