Goto

Collaborating Authors

 Mu, Fangwen


Vulnerability of Text-to-Image Models to Prompt Template Stealing: A Differential Evolution Approach

arXiv.org Artificial Intelligence

Prompt trading has emerged as a significant intellectual property concern in recent years, where vendors entice users by showcasing sample images before selling prompt templates that can generate similar images. This work investigates a critical security vulnerability: attackers can steal prompt templates using only a limited number of sample images. To investigate this threat, we introduce Prism, a prompt-stealing benchmark consisting of 50 templates and 450 images, organized into Easy and Hard difficulty levels. To identify the vulnerabity of VLMs to prompt stealing, we propose EvoStealer, a novel template stealing method that operates without model fine-tuning by leveraging differential evolution algorithms. The system first initializes population sets using multimodal large language models (MLLMs) based on predefined patterns, then iteratively generates enhanced offspring through MLLMs. During evolution, EvoStealer identifies common features across offspring to derive generalized templates. Our comprehensive evaluation conducted across open-source (INTERNVL2-26B) and closed-source models (GPT-4o and GPT-4o-mini) demonstrates that EvoStealer's stolen templates can reproduce images highly similar to originals and effectively generalize to other subjects, significantly outperforming baseline methods with an average improvement of over 10%. Moreover, our cost analysis reveals that EvoStealer achieves template stealing with negligible computational expenses. Our code and dataset are available at https://github.com/whitepagewu/evostealer.


CodePurify: Defend Backdoor Attacks on Neural Code Models via Entropy-based Purification

arXiv.org Artificial Intelligence

Neural code models have found widespread success in tasks pertaining to code intelligence, yet they are vulnerable to backdoor attacks, where an adversary can manipulate the victim model's behavior by inserting triggers into the source code. Recent studies indicate that advanced backdoor attacks can achieve nearly 100% attack success rates on many software engineering tasks. However, effective defense techniques against such attacks remain insufficiently explored. In this study, we propose CodePurify, a novel defense against backdoor attacks on code models through entropy-based purification. Entropy-based purification involves the process of precisely detecting and eliminating the possible triggers in the source code while preserving its semantic information. Within this process, CodePurify first develops a confidence-driven entropy-based measurement to determine whether a code snippet is poisoned and, if so, locates the triggers. Subsequently, it purifies the code by substituting the triggers with benign tokens using a masked language model. We extensively evaluate CodePurify against four advanced backdoor attacks across three representative tasks and two popular code models. The results show that CodePurify significantly outperforms four commonly used defense baselines, improving average defense performance by at least 40%, 40%, and 12% across the three tasks, respectively. These findings highlight the potential of CodePurify to serve as a robust defense against backdoor attacks on neural code models.