Goto

Collaborating Authors

 Movellan, J.R.


Towards Social Robots: Automatic Evaluation of Human-Robot Interaction by Facial Expression Classification

Neural Information Processing Systems

Computer animated agents and robots bring a social dimension to human computerinteraction and force us to think in new ways about how computers could be used in daily life. Face to face communication is a real-time process operating at a time scale of less than a second. In this paper we present progress on a perceptual primitive to automatically detect frontal faces in the video stream and code them with respect to 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. Theface finder employs a cascade of feature detectors trained with boosting techniques [13, 2]. The expression recognizer employs a novel combination of Adaboost and SVM's. The generalization performance to new subjects for a 7-way forced choice was 93.3% and 97% correct on two publicly available datasets.


Towards Social Robots: Automatic Evaluation of Human-Robot Interaction by Facial Expression Classification

Neural Information Processing Systems

Computer animated agents and robots bring a social dimension to human computer interaction and force us to think in new ways about how computers could be used in daily life. Face to face communication is a real-time process operating at a time scale of less than a second. In this paper we present progress on a perceptual primitive to automatically detect frontal faces in the video stream and code them with respect to 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. The face finder employs a cascade of feature detectors trained with boosting techniques [13, 2]. The expression recognizer employs a novel combination of Adaboost and SVM's. The generalization performance to new subjects for a 7-way forced choice was 93.3% and 97% correct on two publicly available datasets. The outputs of the classifier change smoothly as a function of time, providing a potentially valuable representation to code facial expression dynamics in a fully automatic and unobtrusive manner. The system was deployed and evaluated for measuring spontaneous facial expressions in the field in an application for automatic assessment of human-robot interaction.


A Prototype for Automatic Recognition of Spontaneous Facial Actions

Neural Information Processing Systems

Spontaneous facial expressions differ substantially from posed expressions, similar to how continuous, spontaneous speech differs from isolated words produced on command. Previous methods for automatic facial expression recognition assumed images were collected in controlled environments in which the subjects deliberately faced the camera. Since people often nod or turn their heads, automatic recognition of spontaneous facial behavior requires methods for handling out-of-image-plane head rotations. Here we explore an approach based on 3-D warping of images into canonical views. We evaluated the performance of the approach as a front-end for a spontaneous expression recognition system using support vector machines and hidden Markov models. This system employed general purpose learning mechanisms that can be applied to recognition of any facial movement. The system was tested for recognition of a set of facial actions defined by the Facial Action Coding System (FACS). We showed that 3D tracking and warping followed by machine learning techniques directly applied to the warped images, is a viable and promising technology for automatic facial expression recognition. One exciting aspect of the approach presented here is that information about movement dynamics emerged out of filters which were derived from the statistics of images.


A Prototype for Automatic Recognition of Spontaneous Facial Actions

Neural Information Processing Systems

Spontaneous facial expressions differ substantially from posed expressions, similar to how continuous, spontaneous speech differs from isolated words produced on command. Previous methods for automatic facial expression recognition assumed images were collected in controlled environments in which the subjects deliberately faced the camera. Since people often nod or turn their heads, automatic recognition of spontaneous facial behavior requires methods for handling out-of-image-plane head rotations. Here we explore an approach based on 3-D warping of images into canonical views. We evaluated the performance of the approach as a front-end for a spontaneous expression recognition system using support vector machines and hidden Markov models. This system employed general purpose learning mechanisms that can be applied to recognition of any facial movement. The system was tested for recognition of a set of facial actions defined by the Facial Action Coding System (FACS). We showed that 3D tracking and warping followed by machine learning techniques directly applied to the warped images, is a viable and promising technology for automatic facial expression recognition. One exciting aspect of the approach presented here is that information about movement dynamics emerged out of filters which were derived from the statistics of images.


A Prototype for Automatic Recognition of Spontaneous Facial Actions

Neural Information Processing Systems

Spontaneous facial expressions differ substantially from posed expressions, similar to how continuous, spontaneous speech differs from isolated words produced on command. Previous methods for automatic facial expression recognition assumed images were collected in controlled environments in which the subjects deliberately facedthe camera. Since people often nod or turn their heads, automatic recognition of spontaneous facial behavior requires methods for handling out-of-image-plane head rotations. Here we explore an approach basedon 3-D warping of images into canonical views. We evaluated the performance of the approach as a front-end for a spontaneous expression recognition system using support vector machines and hidden Markov models.