Goto

Collaborating Authors

 Mourad, Shibl


Agents Thinking Fast and Slow: A Talker-Reasoner Architecture

arXiv.org Artificial Intelligence

Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman [14]. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.


Proving Theorems using Incremental Learning and Hindsight Experience Replay

arXiv.org Artificial Intelligence

Traditional automated theorem provers for first-order logic depend on speed-optimized search and many handcrafted heuristics that are designed to work best over a wide range of domains. Machine learning approaches in literature either depend on these traditional provers to bootstrap themselves or fall short on reaching comparable performance. In this paper, we propose a general incremental learning algorithm for training domain specific provers for first-order logic without equality, based only on a basic given-clause algorithm, but using a learned clause-scoring function. Clauses are represented as graphs and presented to transformer networks with spectral features. To address the sparsity and the initial lack of training data as well as the lack of a natural curriculum, we adapt hindsight experience replay to theorem proving, so as to be able to learn even when no proof can be found. We show that provers trained this way can match and sometimes surpass state-of-the-art traditional provers on the TPTP dataset in terms of both quantity and quality of the proofs.


AndroidEnv: A Reinforcement Learning Platform for Android

arXiv.org Artificial Intelligence

We introduce AndroidEnv, an open-source platform for Reinforcement Learning (RL) research built on top of the Android ecosystem. AndroidEnv allows RL agents to interact with a wide variety of apps and services commonly used by humans through a universal touchscreen interface. Since agents train on a realistic simulation of an Android device, they have the potential to be deployed on real devices. In this report, we give an overview of the environment, highlighting the significant features it provides for research, and we present an empirical evaluation of some popular reinforcement learning agents on a set of tasks built on this platform.


Training a First-Order Theorem Prover from Synthetic Data

arXiv.org Artificial Intelligence

A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in training successful deep learning models. To tackle this problem, we propose an approach that relies on training purely with synthetically generated theorems, without any human data aside from axioms. We use these theorems to train a neurally-guided saturationbased prover. Our neural prover outperforms the state-of-the-art E-prover on this synthetic data in both time and search steps, and shows significant transfer to the unseen human-written theorems from the TPTP library, where it solves 72% of first-order problems without equality. Most work applying machine learning to theorem proving takes the following approach: 1) pick a dataset of formalized mathematics, such as Mizar or Metamath, or the standard library of a major proof assistant such as HOL-Light or Coq; 2) split the dataset into train and test; 3) use imitation learning or reinforcement learning on the training set to learn a policy; and finally 4) evaluate the policy on the test set (Loos et al. (2017), Bansal et al. (2019), Yang & Deng (2019), Han et al. (2021), Polu & Sutskever (2020)). Such methods are fundamentally limited by the size of the training set, particularly when relying on deep neural networks (Kaplan et al., 2020). Unfortunately, unlike in computer vision and natural language processing, theorem proving datasets are comparatively tiny.


The Hanabi Challenge: A New Frontier for AI Research

arXiv.org Machine Learning

From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay and imperfect information in a two to five player setting. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques capable of imbuing artificial agents with such theory of mind will not only be crucial for their success in Hanabi, but also in broader collaborative efforts, and especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.


The Barbados 2018 List of Open Issues in Continual Learning

arXiv.org Artificial Intelligence

We want to make progress toward artificial general intelligence, namely general-purpose agents that autonomously learn how to competently act in complex environments. The purpose of this report is to sketch a research outline, share some of the most important open issues we are facing, and stimulate further discussion in the community. The content is based on some of our discussions during a weeklong workshop held in Barbados in February 2018. We adopt the reinforcement learning (RL) formulation, where an agent interacts sequentially with an environment, and the agent is provided a reward signal that unambiguously defines success. We want to explicitly consider some of the most challenging dimensions for a developing intelligence.