Mottin, Davide
Automatic Annotation Augmentation Boosts Translation between Molecules and Natural Language
Zhong, Zhiqiang, Larsen, Simon Sataa-Yu, Guo, Haoyu, Tang, Tao, Zhou, Kuangyu, Mottin, Davide
Recent advancements in AI for biological research focus on integrating molecular data with natural language to accelerate drug discovery. However, the scarcity of high-quality annotations limits progress in this area. This paper introduces LA$^3$, a Language-based Automatic Annotation Augmentation framework that leverages large language models to augment existing datasets, thereby improving AI training. We demonstrate the effectiveness of LA$^3$ by creating an enhanced dataset, LaChEBI-20, where we systematically rewrite the annotations of molecules from an established dataset. These rewritten annotations preserve essential molecular information while providing more varied sentence structures and vocabulary. Using LaChEBI-20, we train LaMolT5 based on a benchmark architecture to learn the mapping between molecular representations and augmented annotations. Experimental results on text-based *de novo* molecule generation and molecule captioning demonstrate that LaMolT5 outperforms state-of-the-art models. Notably, incorporating LA$^3$ leads to improvements of up to 301% over the benchmark architecture. Furthermore, we validate the effectiveness of LA$^3$ notable applications in *image*, *text* and *graph* tasks, affirming its versatility and utility.
An autoencoder for compressing angle-resolved photoemission spectroscopy data
Agustsson, Steinn Ymir, Haque, Mohammad Ahsanul, Truong, Thi Tam, Bianchi, Marco, Klyuchnikov, Nikita, Mottin, Davide, Karras, Panagiotis, Hofmann, Philip
Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique to determine the electronic structure of solids. Advances in light sources for ARPES experiments are currently leading to a vast increase of data acquisition rates and data quantity. On the other hand, access time to the most advanced ARPES instruments remains strictly limited, calling for fast, effective, and on-the-fly data analysis tools to exploit this time. In response to this need, we introduce ARPESNet, a versatile autoencoder network that efficiently summmarises and compresses ARPES datasets. We train ARPESNet on a large and varied dataset of 2-dimensional ARPES data extracted by cutting standard 3-dimensional ARPES datasets along random directions in $\mathbf{k}$. To test the data representation capacity of ARPESNet, we compare $k$-means clustering quality between data compressed by ARPESNet, data compressed by discrete cosine transform, and raw data, at different noise levels. ARPESNet data excels in clustering quality despite its high compression ratio.
Benchmarking Large Language Models for Molecule Prediction Tasks
Zhong, Zhiqiang, Zhou, Kuangyu, Mottin, Davide
Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks. Despite the widespread adoption of LLMs in NLP, much of their potential in broader fields remains largely unexplored, and significant limitations persist in their design and implementation. Notably, LLMs struggle with structured data, such as graphs, and often falter when tasked with answering domain-specific questions requiring deep expertise, such as those in biology and chemistry. In this paper, we explore a fundamental question: Can LLMs effectively handle molecule prediction tasks? Rather than pursuing top-tier performance, our goal is to assess how LLMs can contribute to diverse molecule tasks. We identify several classification and regression prediction tasks across six standard molecule datasets. Subsequently, we carefully design a set of prompts to query LLMs on these tasks and compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules. Our investigation reveals several key insights: Firstly, LLMs generally lag behind ML models in achieving competitive performance on molecule tasks, particularly when compared to models adept at capturing the geometric structure of molecules, highlighting the constrained ability of LLMs to comprehend graph data. Secondly, LLMs show promise in enhancing the performance of ML models when used collaboratively. Lastly, we engage in a discourse regarding the challenges and promising avenues to harness LLMs for molecule prediction tasks. The code and models are available at https://github.com/zhiqiangzhongddu/LLMaMol.
Autonomous microARPES
Agustsson, Steinn Ymir, Jones, Alfred J. H., Curcio, Davide, Ulstrup, Søren, Miwa, Jill, Mottin, Davide, Karras, Panagiotis, Hofmann, Philip
Angle-resolved photoemission spectroscopy (ARPES) is a technique used to map the occupied electronic structure of solids. Recent progress in X-ray focusing optics has led to the development of ARPES into a microscopic tool, permitting the electronic structure to be spatially mapped across the surface of a sample. This comes at the expense of a time-consuming scanning process to cover not only a three-dimensional energy-momentum ($E, k_z, k_y$) space but also the two-dimensional surface area. Here, we implement a protocol to autonomously search both $\mathbf{k}$- and real space in order to find positions of particular interest, either because of their high photoemission intensity or because of sharp spectral features. The search is based on the use of Gaussian process regression and can easily be expanded to include additional parameters or optimisation criteria. This autonomous experimental control is implemented on the SGM4 micro-focus beamline of the synchrotron radiation source ASTRID2.
On the Robustness of Post-hoc GNN Explainers to Label Noise
Zhong, Zhiqiang, Jiang, Yangqianzi, Mottin, Davide
Proposed as a solution to the inherent black-box limitations of graph neural networks (GNNs), post-hoc GNN explainers aim to provide precise and insightful explanations of the behaviours exhibited by trained GNNs. Despite their recent notable advancements in academic and industrial contexts, the robustness of post-hoc GNN explainers remains unexplored when confronted with label noise. To bridge this gap, we conduct a systematic empirical investigation to evaluate the efficacy of diverse post-hoc GNN explainers under varying degrees of label noise. Our results reveal several key insights: Firstly, post-hoc GNN explainers are susceptible to label perturbations. Secondly, even minor levels of label noise, inconsequential to GNN performance, harm the quality of generated explanations substantially. Lastly, we engage in a discourse regarding the progressive recovery of explanation effectiveness with escalating noise levels.
ActUp: Analyzing and Consolidating tSNE and UMAP
Draganov, Andrew, Jørgensen, Jakob Rødsgaard, Nellemann, Katrine Scheel, Mottin, Davide, Assent, Ira, Berry, Tyrus, Aslay, Cigdem
tSNE and UMAP are popular dimensionality reduction algorithms due to their speed and interpretable low-dimensional embeddings. Despite their popularity, however, little work has been done to study their full span of differences. We theoretically and experimentally evaluate the space of parameters in both tSNE and UMAP and observe that a single one -- the normalization -- is responsible for switching between them. This, in turn, implies that a majority of the algorithmic differences can be toggled without affecting the embeddings. We discuss the implications this has on several theoretic claims behind UMAP, as well as how to reconcile them with existing tSNE interpretations. Based on our analysis, we provide a method (\ourmethod) that combines previously incompatible techniques from tSNE and UMAP and can replicate the results of either algorithm. This allows our method to incorporate further improvements, such as an acceleration that obtains either method's outputs faster than UMAP. We release improved versions of tSNE, UMAP, and \ourmethod that are fully plug-and-play with the traditional libraries at https://github.com/Andrew-Draganov/GiDR-DUN
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
Zhong, Zhiqiang, Barkova, Anastasia, Mottin, Davide
The integration of Artificial Intelligence (AI) into the field of drug discovery has been a growing area of interdisciplinary scientific research. However, conventional AI models are heavily limited in handling complex biomedical structures (such as 2D or 3D protein and molecule structures) and providing interpretations for outputs, which hinders their practical application. As of late, Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data and investigate their properties and functional relationships. Despite extensive efforts, GML methods still suffer from several deficiencies, such as the limited ability to handle supervision sparsity and provide interpretability in learning and inference processes, and their ineffectiveness in utilising relevant domain knowledge. In response, recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery with limited training instances. However, a systematic definition for this burgeoning research direction is yet to be established. This survey presents a comprehensive overview of long-standing drug discovery principles, provides the foundational concepts and cutting-edge techniques for graph-structured data and knowledge databases, and formally summarises Knowledge-augmented Graph Machine Learning (KaGML) for drug discovery. we propose a thorough review of related KaGML works, collected following a carefully designed search methodology, and organise them into four categories following a novel-defined taxonomy. To facilitate research in this promptly emerging field, we also share collected practical resources that are valuable for intelligent drug discovery and provide an in-depth discussion of the potential avenues for future advancements.
Bandits for Learning to Explain from Explanations
Behrens, Freya, Teso, Stefano, Mottin, Davide
We introduce Explearn, an online algorithm that learns to jointly output predictions and explanations for those predictions. Explearn leverages Gaussian Processes (GP)-based contextual bandits. This brings two key benefits. First, GPs naturally capture different kinds of explanations and enable the system designer to control how explanations generalize across the space by virtue of choosing a suitable kernel. Second, Explearn builds on recent results in contextual bandits which guarantee convergence with high probability. Our initial experiments hint at the promise of the approach.
What if Neural Networks had SVDs?
Mathiasen, Alexander, Hvilshøj, Frederik, Jørgensen, Jakob Rødsgaard, Nasery, Anshul, Mottin, Davide
Various Neural Networks employ time-consuming matrix operations like matrix inversion. Many such matrix operations are faster to compute given the Singular Value Decomposition (SVD). Previous work allows using the SVD in Neural Networks without computing it. In theory, the techniques can speed up matrix operations, however, in practice, they are not fast enough. We present an algorithm that is fast enough to speed up several matrix operations. The algorithm increases the degree of parallelism of an underlying matrix multiplication $H\cdot X$ where $H$ is an orthogonal matrix represented by a product of Householder matrices. Code is available at www.github.com/AlexanderMath/fasth .
FREDE: Linear-Space Anytime Graph Embeddings
Tsitsulin, Anton, Munkhoeva, Marina, Mottin, Davide, Karras, Panagiotis, Oseledets, Ivan, Müller, Emmanuel
Low-dimensional representations, or embeddings, of a graph's nodes facilitate data mining tasks. Known embedding methods explicitly or implicitly rely on a similarity measure among nodes. As the similarity matrix is quadratic, a tradeoff between space complexity and embedding quality arises; past research initially opted for heuristics and linear-transform factorizations, which allow for linear space but compromise on quality; recent research has proposed a quadratic-space solution as a viable option too. In this paper we observe that embedding methods effectively aim to preserve the covariance among the rows of a similarity matrix, and raise the question: is there a method that combines (i) linear space complexity, (ii) a nonlinear transform as its basis, and (iii) nontrivial quality guarantees? We answer this question in the affirmative, with FREDE(FREquent Directions Embedding), a sketching-based method that iteratively improves on quality while processing rows of the similarity matrix individually; thereby, it provides, at any iteration, column-covariance approximation guarantees that are, in due course, almost indistinguishable from those of the optimal row-covariance approximation by SVD. Our experimental evaluation on variably sized networks shows that FREDE performs as well as SVD and competitively against current state-of-the-art methods in diverse data mining tasks, even when it derives an embedding based on only 10% of node similarities.