Goto

Collaborating Authors

 Moss, Emanuel


ACE, Action and Control via Explanations: A Proposal for LLMs to Provide Human-Centered Explainability for Multimodal AI Assistants

arXiv.org Artificial Intelligence

In this short paper we address issues related to building multimodal AI systems for human performance support in manufacturing domains. We make two contributions: we first identify challenges of participatory design and training of such systems, and secondly, to address such challenges, we propose the ACE paradigm: "Action and Control via Explanations". Specifically, we suggest that LLMs can be used to produce explanations in the form of human interpretable "semantic frames", which in turn enable end users to provide data the AI system needs to align its multimodal models and representations, including computer vision, automatic speech recognition, and document inputs. ACE, by using LLMs to "explain" using semantic frames, will help the human and the AI system to collaborate, together building a more accurate model of humans activities and behaviors, and ultimately more accurate predictive outputs for better task support, and better outcomes for human users performing manual tasks.


Introducing v0.5 of the AI Safety Benchmark from MLCommons

arXiv.org Artificial Intelligence

This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.


Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning

arXiv.org Artificial Intelligence

In 1996, philosopher Helen Nissenbaum issued a clarion call concerning the erosion of accountability in society due to the ubiquitous delegation of consequential functions to computerized systems. Using the conceptual framing of moral blame, Nissenbaum described four types of barriers to accountability that computerization presented: 1) "many hands," the problem of attributing moral responsibility for outcomes caused by many moral actors; 2) "bugs," a way software developers might shrug off responsibility by suggesting software errors are unavoidable; 3) "computer as scapegoat," shifting blame to computer systems as if they were moral actors; and 4) "ownership without liability," a free pass to the tech industry to deny responsibility for the software they produce. We revisit these four barriers in relation to the recent ascendance of data-driven algorithmic systems--technology often folded under the heading of machine learning (ML) or artificial intelligence (AI)--to uncover the new challenges for accountability that these systems present. We then look ahead to how one might construct and justify a moral, relational framework for holding responsible parties accountable, and argue that the FAccT community is uniquely well-positioned to develop such a framework to weaken the four barriers.