Morrison, Zachary
Nonuniqueness and Convergence to Equivalent Solutions in Observer-based Inverse Reinforcement Learning
Town, Jared, Morrison, Zachary, Kamalapurkar, Rushikesh
A key challenge in solving the deterministic inverse reinforcement learning (IRL) problem online and in real-time is the existence of multiple solutions. Nonuniqueness necessitates the study of the notion of equivalent solutions, i.e., solutions that result in a different cost functional but same feedback matrix, and convergence to such solutions. While offline algorithms that result in convergence to equivalent solutions have been developed in the literature, online, real-time techniques that address nonuniqueness are not available. In this paper, a regularized history stack observer that converges to approximately equivalent solutions of the IRL problem is developed. Novel data-richness conditions are developed to facilitate the analysis and simulation results are provided to demonstrate the effectiveness of the developed technique.
Fault Detection via Occupation Kernel Principal Component Analysis
Morrison, Zachary, Russo, Benjamin P., Lian, Yingzhao, Kamalapurkar, Rushikesh
The reliable operation of automatic systems is heavily dependent on the ability to detect faults in the underlying dynamical system. While traditional model-based methods have been widely used for fault detection, data-driven approaches have garnered increasing attention due to their ease of deployment and minimal need for expert knowledge. In this paper, we present a novel principal component analysis (PCA) method that uses occupation kernels. Occupation kernels result in feature maps that are tailored to the measured data, have inherent noise-robustness due to the use of integration, and can utilize irregularly sampled system trajectories of variable lengths for PCA. The occupation kernel PCA method is used to develop a reconstruction error approach to fault detection and its efficacy is validated using numerical simulations.