Goto

Collaborating Authors

 Morris, Quaid D.


A mixture model for the evolution of gene expression in non-homogeneous datasets

Neural Information Processing Systems

We address the challenge of assessing conservation of gene expression in complex, non-homogeneous datasets. Recent studies have demonstrated the success of probabilistic models in studying the evolution of gene expression in simple eukaryotic organisms such as yeast, for which measurements are typically scalar and independent. Models capable of studying expression evolution in much more complex organisms such as vertebrates are particularly important given the medical and scientific interest in species such as human and mouse. We present a statistical model that makes a number of significant extensions to previous models to enable characterization of changes in expression among highly complex organisms. We demonstrate the efficacy of our method on a microarray dataset containing diverse tissues from multiple vertebrate species. We anticipate that the model will be invaluable in the study of gene expression patterns in other diverse organisms as well, such as worms and insects.


Probabilistic Inference of Alternative Splicing Events in Microarray Data

Neural Information Processing Systems

Alternative splicing (AS) is an important and frequent step in mammalian gene expression that allows a single gene to specify multiple products, and is crucial for the regulation of fundamental biological processes. The extent of AS regulation, and the mechanisms involved, are not well understood. We have developed a custom DNA microarray platform for surveying AS levels on a large scale. We present here a generative model for the AS Array Platform (GenASAP) and demonstrate its utility for quantifying AS levels in different mouse tissues. Learning is performed using a variational expectation maximization algorithm, and the parameters are shown to correctly capture expected AS trends. A comparison of the results obtained with a well-established but low throughput experimental method demonstrate that AS levels obtained from GenASAP are highly predictive of AS levels in mammalian tissues.


Denoising and Untangling Graphs Using Degree Priors

Neural Information Processing Systems

This paper addresses the problem of untangling hidden graphs from a set of noisy detections of undirected edges. We present a model of the generation of the observed graph that includes degree-based structure priors on the hidden graphs. Exact inference in the model is intractable; we present an efficient approximate inference algorithm tocompute edge appearance posteriors. We evaluate our model and algorithm on a biological graph inference problem.