Goto

Collaborating Authors

 Moroni, Davide


A Survey on SAR ship classification using Deep Learning

arXiv.org Artificial Intelligence

Deep learning (DL) has emerged as a powerful tool for Synthetic Aperture Radar (SAR) ship classification. This survey comprehensively analyzes the diverse DL techniques employed in this domain. We identify critical trends and challenges, highlighting the importance of integrating handcrafted features, utilizing public datasets, data augmentation, fine-tuning, explainability techniques, and fostering interdisciplinary collaborations to improve DL model performance. This survey establishes a first-of-its-kind taxonomy for categorizing relevant research based on DL models, handcrafted feature use, SAR attribute utilization, and the impact of fine-tuning. We discuss the methodologies used in SAR ship classification tasks and the impact of different techniques. Finally, the survey explores potential avenues for future research, including addressing data scarcity, exploring novel DL architectures, incorporating interpretability techniques, and establishing standardized performance metrics. By addressing these challenges and leveraging advancements in DL, researchers can contribute to developing more accurate and efficient ship classification systems, ultimately enhancing maritime surveillance and related applications.


Alzheimer Disease Detection from Raman Spectroscopy of the Cerebrospinal Fluid via Topological Machine Learning

arXiv.org Artificial Intelligence

The cerebrospinal fluid (CSF) of 19 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 5 pathological controls have been collected and analysed by Raman spectroscopy (RS). We investigated whether the raw and preprocessed Raman spectra could be used to distinguish AD from controls. First, we applied standard Machine Learning (ML) methods obtaining unsatisfactory results. Then, we applied ML to a set of topological descriptors extracted from raw spectra, achieving a very good classification accuracy (> 87%). Although our results are preliminary, they indicate that RS and topological analysis together may provide an effective combination to confirm or disprove a clinical diagnosis of AD. The next steps will include enlarging the dataset of CSF samples to validate the proposed method better and, possibly, to understand if topological data analysis could support the characterization of AD subtypes.


Are We Using Autoencoders in a Wrong Way?

arXiv.org Artificial Intelligence

Autoencoders are certainly among the most studied and used Deep Learning models: the idea behind them is to train a model in order to reconstruct the same input data. The peculiarity of these models is to compress the information through a bottleneck, creating what is called Latent Space. Autoencoders are generally used for dimensionality reduction, anomaly detection and feature extraction. These models have been extensively studied and updated, given their high simplicity and power. Examples are (i) the Denoising Autoencoder, where the model is trained to reconstruct an image from a noisy one; (ii) Sparse Autoencoder, where the bottleneck is created by a regularization term in the loss function; (iii) Variational Autoencoder, where the latent space is used to generate new consistent data. In this article, we revisited the standard training for the undercomplete Autoencoder modifying the shape of the latent space without using any explicit regularization term in the loss function. We forced the model to reconstruct not the same observation in input, but another one sampled from the same class distribution. We also explored the behaviour of the latent space in the case of reconstruction of a random sample from the whole dataset.