Goto

Collaborating Authors

 Morisot, Adrien


Aya Expanse: Combining Research Breakthroughs for a New Multilingual Frontier

arXiv.org Artificial Intelligence

We introduce the Aya Expanse model family, a new generation of 8B and 32B parameter multilingual language models, aiming to address the critical challenge of developing highly performant multilingual models that match or surpass the capabilities of monolingual models. By leveraging several years of research at Cohere For AI and Cohere, including advancements in data arbitrage, multilingual preference training, and model merging, Aya Expanse sets a new state-of-the-art in multilingual performance. Our evaluations on the Arena-Hard-Auto dataset, translated into 23 languages, demonstrate that Aya Expanse 8B and 32B outperform leading open-weight models in their respective parameter classes, including Gemma 2, Qwen 2.5, and Llama 3.1, achieving up to a 76.6% win-rate. Notably, Aya Expanse 32B outperforms Llama 3.1 70B, a model with twice as many parameters, achieving a 54.0% win-rate. In this short technical report, we present extended evaluation results for the Aya Expanse model family and release their open-weights, together with a new multilingual evaluation dataset m-ArenaHard.


Prioritized training on points that are learnable, worth learning, and not yet learned (workshop version)

arXiv.org Artificial Intelligence

We introduce Goldilocks Selection, a technique for faster model training which selects a sequence of training points that are "just right". We propose an information-theoretic acquisition function -- the reducible validation loss -- and compute it with a small proxy model -- GoldiProx -- to efficiently choose training points that maximize information about a validation set. We show that the "hard" (e.g. high loss) points usually selected in the optimization literature are typically noisy, while the "easy" (e.g. low noise) samples often prioritized for curriculum learning confer less information. Further, points with uncertain labels, typically targeted by active learning, tend to be less relevant to the task. In contrast, Goldilocks Selection chooses points that are "just right" and empirically outperforms the above approaches. Moreover, the selected sequence can transfer to other architectures; practitioners can share and reuse it without the need to recreate it.


Add a SideNet to your MainNet

arXiv.org Machine Learning

As the performance and popularity of deep neural networks has increased, so too has their computational cost. There are many effective techniques for reducing a network's computational footprint (quantisation, pruning, knowledge distillation), but these lead to models whose computational cost is the same regardless of their input. Our human reaction times vary with the complexity of the tasks we perform: easier tasks (e.g. telling apart dogs from boat) are executed much faster than harder ones (e.g. telling apart two similar looking breeds of dogs). Driven by this observation, we develop a method for adaptive network complexity by attaching a small classification layer, which we call SideNet, to a large pretrained network, which we call MainNet. Given an input, the SideNet returns a classification if its confidence level, obtained via softmax, surpasses a user determined threshold, and only passes it along to the large MainNet for further processing if its confidence is too low. This allows us to flexibly trade off the network's performance with its computational cost. Experimental results show that simple single hidden layer perceptron SideNets added onto pretrained ResNet and BERT MainNets allow for substantial decreases in compute with minimal drops in performance on image and text classification tasks. We also highlight three other desirable properties of our method, namely that the classifications obtained by SideNets are calibrated, complementary to other compute reduction techniques, and that they enable the easy exploration of compute accuracy space.