Goto

Collaborating Authors

 Morgenstern, Jamie H.


The Price of Fair PCA: One Extra dimension

Neural Information Processing Systems

We investigate whether the standard dimensionality reduction technique of PCA inadvertently produces data representations with different fidelity for two different populations. We show on several real-world data sets, PCA has higher reconstruction error on population A than on B (for example, women versus men or lower- versus higher-educated individuals). This can happen even when the data set has a similar number of samples from A and B. This motivates our study of dimensionality reduction techniques which maintain similar fidelity for A and B. We define the notion of Fair PCA and give a polynomial-time algorithm for finding a low dimensional representation of the data which is nearly-optimal with respect to this measure. Finally, we show on real-world data sets that our algorithm can be used to efficiently generate a fair low dimensional representation of the data.


A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem

Neural Information Processing Systems

Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. In such settings, one might like to run a ``greedy'' algorithm, which always makes the optimal decision for the individuals at hand --- but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm. We give a smoothed analysis, showing that even when contexts may be chosen by an adversary, small perturbations of the adversary's choices suffice for the algorithm to achieve ``no regret'', perhaps (depending on the specifics of the setting) with a constant amount of initial training data. This suggests that in slightly perturbed environments, exploration and exploitation need not be in conflict in the linear setting.


A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem

Neural Information Processing Systems

Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. In such settings, one might like to run a ``greedy'' algorithm, which always makes the optimal decision for the individuals at hand --- but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm. We give a smoothed analysis, showing that even when contexts may be chosen by an adversary, small perturbations of the adversary's choices suffice for the algorithm to achieve ``no regret'', perhaps (depending on the specifics of the setting) with a constant amount of initial training data. This suggests that in slightly perturbed environments, exploration and exploitation need not be in conflict in the linear setting.


Fairness in Learning: Classic and Contextual Bandits

Neural Information Processing Systems

We introduce the study of fairness in multi-armed bandit problems. Our fairness definition demands that, given a pool of applicants, a worse applicant is never favored over a better one, despite a learning algorithm's uncertainty over the true payoffs. In the classic stochastic bandits problem we provide a provably fair algorithm based on "chained" confidence intervals, and prove a cumulative regret bound with a cubic dependence on the number of arms. We further show that any fair algorithm must have such a dependence, providing a strong separation between fair and unfair learning that extends to the general contextual case. In the general contextual case, we prove a tight connection between fairness and the KWIK (Knows What It Knows) learning model: a KWIK algorithm for a class of functions can be transformed into a provably fair contextual bandit algorithm and vice versa. This tight connection allows us to provide a provably fair algorithm for the linear contextual bandit problem with a polynomial dependence on the dimension, and to show (for a different class of functions) a worst-case exponential gap in regret between fair and non-fair learning algorithms.


On the Pseudo-Dimension of Nearly Optimal Auctions

Neural Information Processing Systems

This paper develops a general approach, rooted in statistical learning theory, to learning an approximately revenue-maximizing auction from data. We introduce t-level auctions to interpolate between simple auctions, such as welfare maximization with reserve prices, and optimal auctions, thereby balancing the competing demands of expressivity and simplicity. We prove that such auctions have small representation error, in the sense that for every product distribution F over bidders’ valuations, there exists a t-level auction with small t and expected revenue close to optimal. We show that the set of t-level auctions has modest pseudo-dimension (for polynomial t) and therefore leads to small learning error. One consequence of our results is that, in arbitrary single-parameter settings, one can learn a mechanism with expected revenue arbitrarily close to optimal from a polynomial number of samples.