Moreno, Eric
Building Machine Learning Challenges for Anomaly Detection in Science
Campolongo, Elizabeth G., Chou, Yuan-Tang, Govorkova, Ekaterina, Bhimji, Wahid, Chao, Wei-Lun, Harris, Chris, Hsu, Shih-Chieh, Lapp, Hilmar, Neubauer, Mark S., Namayanja, Josephine, Subramanian, Aneesh, Harris, Philip, Anand, Advaith, Carlyn, David E., Ghosh, Subhankar, Lawrence, Christopher, Moreno, Eric, Raikman, Ryan, Wu, Jiaman, Zhang, Ziheng, Adhi, Bayu, Gharehtoragh, Mohammad Ahmadi, Monsalve, Saúl Alonso, Babicz, Marta, Baig, Furqan, Banerji, Namrata, Bardon, William, Barna, Tyler, Berger-Wolf, Tanya, Dieng, Adji Bousso, Brachman, Micah, Buat, Quentin, Hui, David C. Y., Cao, Phuong, Cerino, Franco, Chang, Yi-Chun, Chaulagain, Shivaji, Chen, An-Kai, Chen, Deming, Chen, Eric, Chou, Chia-Jui, Ciou, Zih-Chen, Cochran-Branson, Miles, Choi, Artur Cordeiro Oudot, Coughlin, Michael, Cremonesi, Matteo, Dadarlat, Maria, Darch, Peter, Desai, Malina, Diaz, Daniel, Dillmann, Steven, Duarte, Javier, Duporge, Isla, Ekka, Urbas, Heravi, Saba Entezari, Fang, Hao, Flynn, Rian, Fox, Geoffrey, Freed, Emily, Gao, Hang, Gao, Jing, Gonski, Julia, Graham, Matthew, Hashemi, Abolfazl, Hauck, Scott, Hazelden, James, Peterson, Joshua Henry, Hoang, Duc, Hu, Wei, Huennefeld, Mirco, Hyde, David, Janeja, Vandana, Jaroenchai, Nattapon, Jia, Haoyi, Kang, Yunfan, Kholiavchenko, Maksim, Khoda, Elham E., Kim, Sangin, Kumar, Aditya, Lai, Bo-Cheng, Le, Trung, Lee, Chi-Wei, Lee, JangHyeon, Lee, Shaocheng, van der Lee, Suzan, Lewis, Charles, Li, Haitong, Li, Haoyang, Liao, Henry, Liu, Mia, Liu, Xiaolin, Liu, Xiulong, Loncar, Vladimir, Lyu, Fangzheng, Makarov, Ilya, Mao, Abhishikth Mallampalli Chen-Yu, Michels, Alexander, Migala, Alexander, Mokhtar, Farouk, Morlighem, Mathieu, Namgung, Min, Novak, Andrzej, Novick, Andrew, Orsborn, Amy, Padmanabhan, Anand, Pan, Jia-Cheng, Pandya, Sneh, Pei, Zhiyuan, Peixoto, Ana, Percivall, George, Leung, Alex Po, Purushotham, Sanjay, Que, Zhiqiang, Quinnan, Melissa, Ranjan, Arghya, Rankin, Dylan, Reissel, Christina, Riedel, Benedikt, Rubenstein, Dan, Sasli, Argyro, Shlizerman, Eli, Singh, Arushi, Singh, Kim, Sokol, Eric R., Sorensen, Arturo, Su, Yu, Taheri, Mitra, Thakkar, Vaibhav, Thomas, Ann Mariam, Toberer, Eric, Tsai, Chenghan, Vandewalle, Rebecca, Verma, Arjun, Venterea, Ricco C., Wang, He, Wang, Jianwu, Wang, Sam, Wang, Shaowen, Watts, Gordon, Weitz, Jason, Wildridge, Andrew, Williams, Rebecca, Wolf, Scott, Xu, Yue, Yan, Jianqi, Yu, Jai, Zhang, Yulei, Zhao, Haoran, Zhao, Ying, Zhong, Yibo
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
Jiang, Zhixing, Yin, Dennis, Khoda, Elham E, Loncar, Vladimir, Govorkova, Ekaterina, Moreno, Eric, Harris, Philip, Hauck, Scott, Hsu, Shih-Chieh
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the \texttt{hls4ml} tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 $\mu$s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
Applications and Techniques for Fast Machine Learning in Science
Deiana, Allison McCarn, Tran, Nhan, Agar, Joshua, Blott, Michaela, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Hauck, Scott, Liu, Mia, Neubauer, Mark S., Ngadiuba, Jennifer, Ogrenci-Memik, Seda, Pierini, Maurizio, Aarrestad, Thea, Bahr, Steffen, Becker, Jurgen, Berthold, Anne-Sophie, Bonventre, Richard J., Bravo, Tomas E. Muller, Diefenthaler, Markus, Dong, Zhen, Fritzsche, Nick, Gholami, Amir, Govorkova, Ekaterina, Hazelwood, Kyle J, Herwig, Christian, Khan, Babar, Kim, Sehoon, Klijnsma, Thomas, Liu, Yaling, Lo, Kin Ho, Nguyen, Tri, Pezzullo, Gianantonio, Rasoulinezhad, Seyedramin, Rivera, Ryan A., Scholberg, Kate, Selig, Justin, Sen, Sougata, Strukov, Dmitri, Tang, William, Thais, Savannah, Unger, Kai Lukas, Vilalta, Ricardo, Krosigk, Belinavon, Warburton, Thomas K., Flechas, Maria Acosta, Aportela, Anthony, Calvet, Thomas, Cristella, Leonardo, Diaz, Daniel, Doglioni, Caterina, Galati, Maria Domenica, Khoda, Elham E, Fahim, Farah, Giri, Davide, Hawks, Benjamin, Hoang, Duc, Holzman, Burt, Hsu, Shih-Chieh, Jindariani, Sergo, Johnson, Iris, Kansal, Raghav, Kastner, Ryan, Katsavounidis, Erik, Krupa, Jeffrey, Li, Pan, Madireddy, Sandeep, Marx, Ethan, McCormack, Patrick, Meza, Andres, Mitrevski, Jovan, Mohammed, Mohammed Attia, Mokhtar, Farouk, Moreno, Eric, Nagu, Srishti, Narayan, Rohin, Palladino, Noah, Que, Zhiqiang, Park, Sang Eon, Ramamoorthy, Subramanian, Rankin, Dylan, Rothman, Simon, Sharma, Ashish, Summers, Sioni, Vischia, Pietro, Vlimant, Jean-Roch, Weng, Olivia
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.