Goto

Collaborating Authors

 Morency, Louis-Philippe


Nano: Nested Human-in-the-Loop Reward Learning for Few-shot Language Model Control

arXiv.org Artificial Intelligence

Pretrained language models have demonstrated extraordinary capabilities in language generation. However, real-world tasks often require controlling the distribution of generated text in order to mitigate bias, promote fairness, and achieve personalization. Existing techniques for controlling the distribution of generated text only work with quantified distributions, which require pre-defined categories, proportions of the distribution, or an existing corpus following the desired distributions. However, many important distributions, such as personal preferences, are unquantified. In this work, we tackle the problem of generating text following arbitrary distributions (quantified and unquantified) by proposing Nano, a few-shot human-in-the-loop training algorithm that continuously learns from human feedback. Nano achieves state-of-the-art results on single topic/attribute as well as quantified distribution control compared to previous works. We also show that Nano is able to learn unquantified distributions, achieves personalization, and captures differences between different individuals' personal preferences with high sample efficiency.


Neural Mixed Effects for Nonlinear Personalized Predictions

arXiv.org Artificial Intelligence

Personalized prediction is a machine learning approach that predicts a person's future observations based on their past labeled observations and is typically used for sequential tasks, e.g., to predict daily mood ratings. When making personalized predictions, a model can combine two types of trends: (a) trends shared across people, i.e., person-generic trends, such as being happier on weekends, and (b) unique trends for each person, i.e., person-specific trends, such as a stressful weekly meeting. Mixed effect models are popular statistical models to study both trends by combining person-generic and person-specific parameters. Though linear mixed effect models are gaining popularity in machine learning by integrating them with neural networks, these integrations are currently limited to linear person-specific parameters: ruling out nonlinear person-specific trends. In this paper, we propose Neural Mixed Effect (NME) models to optimize nonlinear person-specific parameters anywhere in a neural network in a scalable manner. NME combines the efficiency of neural network optimization with nonlinear mixed effects modeling. Empirically, we observe that NME improves performance across six unimodal and multimodal datasets, including a smartphone dataset to predict daily mood and a mother-adolescent dataset to predict affective state sequences where half the mothers experience at least moderate symptoms of depression. Furthermore, we evaluate NME for two model architectures, including for neural conditional random fields (CRF) to predict affective state sequences where the CRF learns nonlinear person-specific temporal transitions between affective states. Analysis of these person-specific transitions on the mother-adolescent dataset shows interpretable trends related to the mother's depression symptoms.


Cross-modal Attention Congruence Regularization for Vision-Language Relation Alignment

arXiv.org Artificial Intelligence

Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., "mug in grass") with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the directed language attention from 'mug' to 'grass' (capturing the semantic relation 'in') to match the directed visual attention from the mug to the grass. Tokens and their corresponding objects are softly identified using the cross-modal attention. We prove that this notion of soft relation alignment is equivalent to enforcing congruence between vision and language attention matrices under a 'change of basis' provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to UNITER and improve on the state-of-the-art approach to Winoground.


High-Modality Multimodal Transformer: Quantifying Modality & Interaction Heterogeneity for High-Modality Representation Learning

arXiv.org Artificial Intelligence

Many real-world problems are inherently multimodal, from spoken language, gestures, and paralinguistics humans use to communicate, to force, proprioception, and visual sensors on robots. While there has been an explosion of interest in multimodal learning, these methods are focused on a small set of modalities primarily in language, vision, and audio. In order to accelerate generalization towards diverse and understudied modalities, this paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities. Since adding new models for every new modality becomes prohibitively expensive, a critical technical challenge is heterogeneity quantification: how can we measure which modalities encode similar information and interactions in order to permit parameter sharing with previous modalities? This paper proposes two new information theoretic metrics for heterogeneity quantification: (1) modality heterogeneity studies how similar 2 modalities {X1,X2} are by measuring how much information can be transferred from X1 to X2, while (2) interaction heterogeneity studies how similarly pairs of modalities {X1,X2}, {X3,X4} interact by measuring how much information can be transferred from fusing {X1,X2} to {X3,X4}. We show the importance of these 2 proposed metrics as a way to automatically prioritize the fusion of modalities that contain unique information or interactions. The result is a single model, HighMMT, that scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas. Not only does HighMMT outperform prior methods on the tradeoff between performance and efficiency, it also demonstrates a crucial scaling behavior: performance continues to improve with each modality added, and it transfers to entirely new modalities and tasks during fine-tuning.


MultiZoo & MultiBench: A Standardized Toolkit for Multimodal Deep Learning

arXiv.org Artificial Intelligence

Learning multimodal representations involves integrating information from multiple heterogeneous sources of data. In order to accelerate progress towards understudied modalities and tasks while ensuring real-world robustness, we release MultiZoo, a public toolkit consisting of standardized implementations of > 20 core multimodal algorithms and MultiBench, a large-scale benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas. Together, these provide an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation. To enable holistic evaluation, we offer a comprehensive methodology to assess (1) generalization, (2) time and space complexity, and (3) modality robustness. MultiBench paves the way towards a better understanding of the capabilities and limitations of multimodal models, while ensuring ease of use, accessibility, and reproducibility. Our toolkits are publicly available, will be regularly updated, and welcome inputs from the community.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.


Language Models Get a Gender Makeover: Mitigating Gender Bias with Few-Shot Data Interventions

arXiv.org Artificial Intelligence

Societal biases present in pre-trained large language models are a critical issue as these models have been shown to propagate biases in countless downstream applications, rendering them unfair towards specific groups of people. Since large-scale retraining of these models from scratch is both time and compute-expensive, a variety of approaches have been previously proposed that de-bias a pre-trained model. While the majority of current state-of-the-art debiasing methods focus on changes to the training regime, in this paper, we propose data intervention strategies as a powerful yet simple technique to reduce gender bias in pre-trained models. Specifically, we empirically show that by fine-tuning a pre-trained model on only 10 de-biased (intervened) training examples, the tendency to favor any gender is significantly reduced. Since our proposed method only needs a few training examples, our few-shot debiasing approach is highly feasible and practical. Through extensive experimentation, we show that our debiasing technique performs better than competitive state-of-the-art baselines with minimal loss in language modeling ability.


Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications

arXiv.org Artificial Intelligence

In many machine learning systems that jointly learn from multiple modalities, a core research question is to understand the nature of multimodal interactions: the emergence of new task-relevant information during learning from both modalities that was not present in either alone. We study this challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data and naturally co-occurring multimodal data (e.g., unlabeled images and captions, video and corresponding audio) but when labeling them is time-consuming. Using a precise information-theoretic definition of interactions, our key contributions are the derivations of lower and upper bounds to quantify the amount of multimodal interactions in this semi-supervised setting. We propose two lower bounds based on the amount of shared information between modalities and the disagreement between separately trained unimodal classifiers, and derive an upper bound through connections to approximate algorithms for min-entropy couplings. We validate these estimated bounds and show how they accurately track true interactions. Finally, two semi-supervised multimodal applications are explored based on these theoretical results: (1) analyzing the relationship between multimodal performance and estimated interactions, and (2) self-supervised learning that embraces disagreement between modalities beyond agreement as is typically done.


Understanding Masked Autoencoders via Hierarchical Latent Variable Models

arXiv.org Artificial Intelligence

Masked autoencoder (MAE), a simple and effective self-supervised learning framework based on the reconstruction of masked image regions, has recently achieved prominent success in a variety of vision tasks. Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking. In this work, we formally characterize and justify existing empirical insights and provide theoretical guarantees of MAE. We formulate the underlying data-generating process as a hierarchical latent variable model and show that under reasonable assumptions, MAE provably identifies a set of latent variables in the hierarchical model, explaining why MAE can extract high-level information from pixels. Further, we show how key hyperparameters in MAE (the masking ratio and the patch size) determine which true latent variables to be recovered, therefore influencing the level of semantic information in the representation. Specifically, extremely large or small masking ratios inevitably lead to low-level representations. Our theory offers coherent explanations of existing empirical observations and provides insights for potential empirical improvements and fundamental limitations of the masking-reconstruction paradigm. We conduct extensive experiments to validate our theoretical insights.


SenteCon: Leveraging Lexicons to Learn Human-Interpretable Language Representations

arXiv.org Artificial Intelligence

Although deep language representations have become the dominant form of language featurization in recent years, in many settings it is important to understand a model's decision-making process. This necessitates not only an interpretable model but also interpretable features. In particular, language must be featurized in a way that is interpretable while still characterizing the original text well. We present SenteCon, a method for introducing human interpretability in deep language representations. Given a passage of text, SenteCon encodes the text as a layer of interpretable categories in which each dimension corresponds to the relevance of a specific category. Our empirical evaluations indicate that encoding language with SenteCon provides high-level interpretability at little to no cost to predictive performance on downstream tasks. Moreover, we find that SenteCon outperforms existing interpretable language representations with respect to both its downstream performance and its agreement with human characterizations of the text.