Moreau, Yves
Federated Block-Term Tensor Regression for decentralised data analysis in healthcare
Faes, Axel, Pirmani, Ashkan, Moreau, Yves, Peeters, Liesbet M.
Block-Term Tensor Regression (BTTR) has proven to be a powerful tool for modeling complex, high-dimensional data by leveraging multilinear relationships, making it particularly well-suited for applications in healthcare and neuroscience. However, traditional implementations of BTTR rely on centralized datasets, which pose significant privacy risks and hinder collaboration across institutions. To address these challenges, we introduce Federated Block-Term Tensor Regression (FBTTR), an extension of BTTR designed for federated learning scenarios. FBTTR enables decentralized data analysis, allowing institutions to collaboratively build predictive models while preserving data privacy and complying with regulations. FBTTR represents a major step forward in applying tensor regression to federated learning environments. Its performance is evaluated in two case studies: finger movement decoding from Electrocorticography (ECoG) signals and heart disease prediction. In the first case study, using the BCI Competition IV dataset, FBTTR outperforms non-multilinear models, demonstrating superior accuracy in decoding finger movements. For the dataset, for subject 3, the thumb obtained a performance of 0.76 $\pm$ .05 compared to 0.71 $\pm$ 0.05 for centralised BTTR. In the second case study, FBTTR is applied to predict heart disease using real-world clinical datasets, outperforming both standard federated learning approaches and centralized BTTR models. In the Fed-Heart-Disease Dataset, an AUC-ROC was obtained of 0.872 $\pm$ 0.02 and an accuracy of 0.772 $\pm$ 0.02 compared to 0.812 $\pm$ 0.003 and 0.753 $\pm$ 0.007 for the centralized model.
How good Neural Networks interpretation methods really are? A quantitative benchmark
Passemiers, Antoine, Folco, Pietro, Raimondi, Daniele, Birolo, Giovanni, Moreau, Yves, Fariselli, Piero
Saliency Maps (SMs) have been extensively used to interpret deep learning models decision by highlighting the features deemed relevant by the model. They are used on highly nonlinear problems, where linear feature selection (FS) methods fail at highlighting relevant explanatory variables. However, the reliability of gradient-based feature attribution methods such as SM has mostly been only qualitatively (visually) assessed, and quantitative benchmarks are currently missing, partially due to the lack of a definite ground truth on image data. Concerned about the apophenic biases introduced by visual assessment of these methods, in this paper we propose a synthetic quantitative benchmark for Neural Networks (NNs) interpretation methods. For this purpose, we built synthetic datasets with nonlinearly separable classes and increasing number of decoy (random) features, illustrating the challenge of FS in high-dimensional settings. We also compare these methods to conventional approaches such as mRMR or Random Forests. Our results show that our simple synthetic datasets are sufficient to challenge most of the benchmarked methods. TreeShap, mRMR and LassoNet are the best performing FS methods. We also show that, when quantifying the relevance of a few non linearly-entangled predictive features diluted in a large number of irrelevant noisy variables, neural network-based FS and interpretation methods are still far from being reliable.
Weakly Supervised Knowledge Transfer with Probabilistic Logical Reasoning for Object Detection
Oldenhof, Martijn, Arany, Adam, Moreau, Yves, De Brouwer, Edward
Training object detection models usually requires instance-level annotations, such as the positions and labels of all objects present in each image. Such supervision is unfortunately not always available and, more often, only image-level information is provided, also known as weak supervision. Recent works have addressed this limitation by leveraging knowledge from a richly annotated domain. However, the scope of weak supervision supported by these approaches has been very restrictive, preventing them to use all available information. In this work, we propose ProbKT, a framework based on probabilistic logical reasoning that allows to train object detection models with arbitrary types of weak supervision. We empirically show on different datasets that using all available information is beneficial as our ProbKT leads to significant improvement on target domain and better generalization compared to existing baselines. We also showcase the ability of our approach to handle complex logic statements as supervision signal.
Industry-Scale Orchestrated Federated Learning for Drug Discovery
Oldenhof, Martijn, รcs, Gergely, Pejรณ, Balรกzs, Schuffenhauer, Ansgar, Holway, Nicholas, Sturm, Noรฉ, Dieckmann, Arne, Fortmeier, Oliver, Boniface, Eric, Mayer, Clรฉment, Gohier, Arnaud, Schmidtke, Peter, Niwayama, Ritsuya, Kopecky, Dieter, Mervin, Lewis, Rathi, Prakash Chandra, Friedrich, Lukas, Formanek, Andrรกs, Antal, Peter, Rahaman, Jordon, Zalewski, Adam, Heyndrickx, Wouter, Oluoch, Ezron, Stรถรel, Manuel, Vanฤo, Michal, Endico, David, Gelus, Fabien, de Boisfossรฉ, Thaรฏs, Darbier, Adrien, Nicollet, Ashley, Blottiรจre, Matthieu, Telenczuk, Maria, Nguyen, Van Tien, Martinez, Thibaud, Boillet, Camille, Moutet, Kelvin, Picosson, Alexandre, Gasser, Aurรฉlien, Djafar, Inal, Simon, Antoine, Arany, รdรกm, Simm, Jaak, Moreau, Yves, Engkvist, Ola, Ceulemans, Hugo, Marini, Camille, Galtier, Mathieu
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
SparseChem: Fast and accurate machine learning model for small molecules
Arany, Adam, Simm, Jaak, Oldenhof, Martijn, Moreau, Yves
SparseChem provides fast and accurate machine learning models for biochemical applications. Especially, the package supports very high-dimensional sparse inputs, e.g., millions of features and millions of compounds. It is possible to train classification, regression and censored regression models, or combination of them from command line. Additionally, the library can be accessed directly from Python. Source code and documentation is freely available under MIT License on GitHub.
Topological Graph Neural Networks
Horn, Max, De Brouwer, Edward, Moor, Michael, Moreau, Yves, Rieck, Bastian, Borgwardt, Karsten
Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of the Weisfeiler--Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial predictive performance, both on synthetic data sets, which can be trivially classified by humans but not by ordinary GNNs, and on real-world data.
Multilevel Gibbs Sampling for Bayesian Regression
Tavernier, Joris, Simm, Jaak, Arany, Adam, Meerbergen, Karl, Moreau, Yves
Bayesian regression remains a simple but effective tool based on Bayesian inference techniques. For large-scale applications, with complicated posterior distributions, Markov Chain Monte Carlo methods are applied. To improve the well-known computational burden of Markov Chain Monte Carlo approach for Bayesian regression, we developed a multilevel Gibbs sampler for Bayesian regression of linear mixed models. The level hierarchy of data matrices is created by clustering the features and/or samples of data matrices. Additionally, the use of correlated samples is investigated for variance reduction to improve the convergence of the Markov Chain. Testing on a diverse set of data sets, speed-up is achieved for almost all of them without significant loss in predictive performance.
ChemGrapher: Optical Graph Recognition of Chemical Compounds by Deep Learning
Oldenhof, Martijn, Arany, Adam, Moreau, Yves, Simm, Jaak
In drug discovery, knowledge of the graph structure of chemical compounds is essential. Many thousands of scientific articles in chemistry and pharmaceutical sciences have investigated chemical compounds, but in cases the details of the structure of these chemical compounds is published only as an images. A tool to analyze these images automatically and convert them into a chemical graph structure would be useful for many applications, such drug discovery. A few such tools are available and they are mostly derived from optical character recognition. However, our evaluation of the performance of those tools reveals that they make often mistakes in detecting the correct bond multiplicity and stereochemical information. In addition, errors sometimes even lead to missing atoms in the resulting graph. In our work, we address these issues by developing a compound recognition method based on machine learning. More specifically, we develop a deep neural network model for optical compound recognition. The deep learning solution presented here consists of a segmentation model, followed by three classification models that predict atom locations, bonds and charges. Furthermore, this model not only predicts the graph structure of the molecule but also produces all information necessary to relate each component of the resulting graph to the source image. This solution is scalable and could rapidly process thousands of images. Finally, we compare empirically the proposed method to a well-established tool and observe significant error reductions.
Graph Informer Networks for Molecules
Simm, Jaak, Arany, Adam, De Brouwer, Edward, Moreau, Yves
In machine learning, chemical molecules are often represented by sparse high-dimensional vectorial fingerprints. However, a more natural mathematical object for molecule representation is a graph, which is much more challenging to handle from a machine learning perspective. In recent years, several deep learning architectures have been proposed to directly learn from the graph structure of chemical molecules, including graph convolution (Duvenaud et al., 2015) and graph gating networks (Li et al., 2015). Here, we introduce Graph Informer, a route-based multi-head attention mechanism inspired by transformer networks (Vaswani et al., 2017), which incorporates features for node pairs. We show empirically that the proposed method gives significant improvements over existing approaches in prediction tasks for 13C nuclear magnetic resonance spectra and for drug bioactivity. These results indicate that our method is well suited for both node-level and graph-level prediction tasks.
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
De Brouwer, Edward, Simm, Jaak, Arany, Adam, Moreau, Yves
Modeling real-world multidimensional time series can be particularly challenging when these are sporadically observed (i.e., sampling is irregular both in time and across dimensions)--such as in the case of clinical patient data. To address these challenges, we propose (1) a continuous-time version of the Gated Recurrent Unit, building upon the recent Neural Ordinary Differential Equations (Chen et al., 2018), and (2) a Bayesian update network that processes the sporadic observations. We bring these two ideas together in our GRU-ODE-Bayes method. We then demonstrate that the proposed method encodes a continuity prior for the latent process and that it can exactly represent the Fokker-Planck dynamics of complex processes driven by a multidimensional stochastic differential equation. Additionally, empirical evaluation shows that our method outperforms the state of the art on both synthetic data and real-world data with applications in healthcare and climate forecast. What is more, the continuity prior is shown to be well suited for low number of samples settings.