Not enough data to create a plot.
Try a different view from the menu above.
Morari, Manfred
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Cui, Tianqi, Bertalan, Thomas, Pappas, George J., Morari, Manfred, Kevrekidis, Ioannis G., Fazlyab, Mahyar
Neural networks are known to be vulnerable to adversarial attacks, which are small, imperceptible perturbations that can significantly alter the network's output. Conversely, there may exist large, meaningful perturbations that do not affect the network's decision (excessive invariance). In our research, we investigate this latter phenomenon in two contexts: (a) discrete-time dynamical system identification, and (b) the calibration of a neural network's output to that of another network. We examine noninvertibility through the lens of mathematical optimization, where the global solution measures the ``safety" of the network predictions by their distance from the non-invertibility boundary. We formulate mixed-integer programs (MIPs) for ReLU networks and $L_p$ norms ($p=1,2,\infty$) that apply to neural network approximators of dynamical systems. We also discuss how our findings can be useful for invertibility certification in transformations between neural networks, e.g. between different levels of network pruning.
Learning to Control Linear Systems can be Hard
Tsiamis, Anastasios, Ziemann, Ingvar, Morari, Manfred, Matni, Nikolai, Pappas, George J.
In this paper, we study the statistical difficulty of learning to control linear systems. We focus on two standard benchmarks, the sample complexity of stabilization, and the regret of the online learning of the Linear Quadratic Regulator (LQR). Prior results state that the statistical difficulty for both benchmarks scales polynomially with the system state dimension up to system-theoretic quantities. However, this does not reveal the whole picture. By utilizing minimax lower bounds for both benchmarks, we prove that there exist non-trivial classes of systems for which learning complexity scales dramatically, i.e. exponentially, with the system dimension. This situation arises in the case of underactuated systems, i.e. systems with fewer inputs than states. Such systems are structurally difficult to control and their system theoretic quantities can scale exponentially with the system dimension dominating learning complexity. Under some additional structural assumptions (bounding systems away from uncontrollability), we provide qualitatively matching upper bounds. We prove that learning complexity can be at most exponential with the controllability index of the system, that is the degree of underactuation.
Learning to Track Dynamic Targets in Partially Known Environments
Jeong, Heejin, Hassani, Hamed, Morari, Manfred, Lee, Daniel D., Pappas, George J.
We solve active target tracking, one of the essential tasks in autonomous systems, using a deep reinforcement learning (RL) approach. In this problem, an autonomous agent is tasked with acquiring information about targets of interests using its onboard sensors. The classical challenges in this problem are system model dependence and the difficulty of computing information-theoretic cost functions for a long planning horizon. RL provides solutions for these challenges as the length of its effective planning horizon does not affect the computational complexity, and it drops the strong dependency of an algorithm on system models. In particular, we introduce Active Tracking Target Network (ATTN), a unified RL policy that is capable of solving major sub-tasks of active target tracking -- in-sight tracking, navigation, and exploration. The policy shows robust behavior for tracking agile and anomalous targets with a partially known target model. Additionally, the same policy is able to navigate in obstacle environments to reach distant targets as well as explore the environment when targets are positioned in unexpected locations.
Learning Q-network for Active Information Acquisition
Jeong, Heejin, Schlotfeldt, Brent, Hassani, Hamed, Morari, Manfred, Lee, Daniel D., Pappas, George J.
In this paper, we propose a novel Reinforcement Learning approach for solving the Active Information Acquisition problem, which requires an agent to choose a sequence of actions in order to acquire information about a process of interest using on-board sensors. The classic challenges in the information acquisition problem are the dependence of a planning algorithm on known models and the difficulty of computing information-theoretic cost functions over arbitrary distributions. In contrast, the proposed framework of reinforcement learning does not require any knowledge on models and alleviates the problems during an extended training stage. It results in policies that are efficient to execute online and applicable for real-time control of robotic systems. Furthermore, the state-of-the-art planning methods are typically restricted to short horizons, which may become problematic with local minima. Reinforcement learning naturally handles the issue of planning horizon in information problems as it maximizes a discounted sum of rewards over a long finite or infinite time horizon. We discuss the potential benefits of the proposed framework and compare the performance of the novel algorithm to an existing information acquisition method for multi-target tracking scenarios.
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Fazlyab, Mahyar, Robey, Alexander, Hassani, Hamed, Morari, Manfred, Pappas, George J.
Tight estimation of the Lipschitz constant for deep neural networks (DNNs) is useful in many applications ranging from robustness certification of classifiers to stability analysis of closed-loop systems with reinforcement learning controllers. Existing methods in the literature for estimating the Lipschitz constant suffer from either lack of accuracy or poor scalability. In this paper, we present a convex optimization framework to compute guaranteed upper bounds on the Lipschitz constant of DNNs both accurately and efficiently. Our main idea is to interpret activation functions as gradients of convex potential functions. Hence, they satisfy certain properties that can be described by quadratic constraints. This particular description allows us to pose the Lipschitz constant estimation problem as a semidefinite program (SDP). The resulting SDP can be adapted to increase either the estimation accuracy (by capturing the interaction between activation functions of different layers) or scalability (by decomposition and parallel implementation). We illustrate the utility of our approach with a variety of experiments on randomly generated networks and on classifiers trained on the MNIST and Iris datasets. In particular, we experimentally demonstrate that our Lipschitz bounds are the most accurate compared to those in the literature. We also study the impact of adversarial training methods on the Lipschitz bounds of the resulting classifiers and show that our bounds can be used to efficiently provide robustness guarantees.