Goto

Collaborating Authors

Moraffah, Raha


Evaluation Methods and Measures for Causal Learning Algorithms

arXiv.org Artificial Intelligence

The convenient access to copious multi-faceted data has encouraged machine learning researchers to reconsider correlation-based learning and embrace the opportunity of causality-based learning, i.e., causal machine learning (causal learning). Recent years have therefore witnessed great effort in developing causal learning algorithms aiming to help AI achieve human-level intelligence. Due to the lack-of ground-truth data, one of the biggest challenges in current causal learning research is algorithm evaluations. This largely impedes the cross-pollination of AI and causal inference, and hinders the two fields to benefit from the advances of the other. To bridge from conventional causal inference (i.e., based on statistical methods) to causal learning with big data (i.e., the intersection of causal inference and machine learning), in this survey, we review commonly-used datasets, evaluation methods, and measures for causal learning using an evaluation pipeline similar to conventional machine learning. We focus on the two fundamental causal-inference tasks and causality-aware machine learning tasks. Limitations of current evaluation procedures are also discussed. We then examine popular causal inference tools/packages and conclude with primary challenges and opportunities for benchmarking causal learning algorithms in the era of big data. The survey seeks to bring to the forefront the urgency of developing publicly available benchmarks and consensus-building standards for causal learning evaluation with observational data. In doing so, we hope to broaden the discussions and facilitate collaboration to advance the innovation and application of causal learning.


Causal Inference for Time series Analysis: Problems, Methods and Evaluation

arXiv.org Machine Learning

Time series data is a collection of chronological observations which is generated by several domains such as medical and financial fields. Over the years, different tasks such as classification, forecasting, and clustering have been proposed to analyze this type of data. Time series data has been also used to study the effect of interventions over time. Moreover, in many fields of science, learning the causal structure of dynamic systems and time series data is considered an interesting task which plays an important role in scientific discoveries. Estimating the effect of an intervention and identifying the causal relations from the data can be performed via causal inference. Existing surveys on time series discuss traditional tasks such as classification and forecasting or explain the details of the approaches proposed to solve a specific task. In this paper, we focus on two causal inference tasks, i.e., treatment effect estimation and causal discovery for time series data, and provide a comprehensive review of the approaches in each task. Furthermore, we curate a list of commonly used evaluation metrics and datasets for each task and provide in-depth insight. These metrics and datasets can serve as benchmarks for research in the field.


Use of Bayesian Nonparametric methods for Estimating the Measurements in High Clutter

arXiv.org Machine Learning

Robust tracking of a target in a clutter environment is an important and challenging task. In recent years, the nearest neighbor methods and probabilistic data association filters were proposed. However, the performance of these methods diminishes as the number of measurements increases. In this paper, we propose a robust generative approach to effectively model multiple sensor measurements for tracking a moving target in an environment with high clutter. We assume a time-dependent number of measurements that include sensor observations with unknown origin, some of which may only contain clutter with no additional information. We robustly and accurately estimate the trajectory of the moving target in a high clutter environment with an unknown number of clutters by employing Bayesian nonparametric modeling. In particular, we employ a class of joint Bayesian nonparametric models to construct the joint prior distribution of target and clutter measurements such that the conditional distributions follow a Dirichlet process. The marginalized Dirichlet process prior of the target measurements is then used in a Bayesian tracker to estimate the dynamically-varying target state. We show through experiments that the tracking performance and effectiveness of our proposed framework are increased by suppressing high clutter measurements. In addition, we show that our proposed method outperforms existing methods such as nearest neighbor and probability data association filters.


Causal Adversarial Network for Learning Conditional and Interventional Distributions

arXiv.org Machine Learning

We propose a generative Causal Adversarial Network (CAN) for learning and sampling from conditional and interventional distributions. In contrast to the existing CausalGAN which requires the causal graph to be given, our proposed framework learns the causal relations from the data and generates samples accordingly. The proposed CAN comprises a two-fold process namely Label Generation Network (LGN) and Conditional Image Generation Network (CIGN). The LGN is a GAN-based architecture which learns and samples from the causal model over labels. The sampled labels are then fed to CIGN, a conditional GAN architecture, which learns the relationships amongst labels and pixels and pixels themselves and generates samples based on them. This framework is equipped with an intervention mechanism which enables. the model to generate samples from interventional distributions. We quantitatively and qualitatively assess the performance of CAN and empirically show that our model is able to generate both interventional and conditional samples without having access to the causal graph for the application of face generation on CelebA data.


Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation

arXiv.org Machine Learning

Machine learning models have had discernible achievements in a myriad of applications. However, most of these models are black-boxes, and it is obscure how the decisions are made by them. This makes the models unreliable and untrustworthy. To provide insights into the decision making processes of these models, a variety of traditional interpretable models have been proposed. Moreover, to generate more human-friendly explanations, recent work on interpretability tries to answer questions related to causality such as "Why does this model makes such decisions?" or "Was it a specific feature that caused the decision made by the model?". In this work, models that aim to answer causal questions are referred to as causal interpretable models. The existing surveys have covered concepts and methodologies of traditional interpretability. In this work, we present a comprehensive survey on causal interpretable models from the aspects of the problems and methods. In addition, this survey provides in-depth insights into the existing evaluation metrics for measuring interpretability, which can help practitioners understand for what scenarios each evaluation metric is suitable.


Deep causal representation learning for unsupervised domain adaptation

arXiv.org Machine Learning

Studies show that the representations learned by deep neural networks can be transferred to similar prediction tasks in other domains for which we do not have enough labeled data. However, as we transition to higher layers in the model, the representations become more task-specific and less generalizable. Recent research on deep domain adaptation proposed to mitigate this problem by forcing the deep model to learn more transferable feature representations across domains. This is achieved by incorporating domain adaptation methods into deep learning pipeline. The majority of existing models learn the transferable feature representations which are highly correlated with the outcome. However, correlations are not always transferable. In this paper, we propose a novel deep causal representation learning framework for unsupervised domain adaptation, in which we propose to learn domain-invariant causal representations of the input from the source domain. We simulate a virtual target domain using reweighted samples from the source domain and estimate the causal effect of features on the outcomes. The extensive comparative study demonstrates the strengths of the proposed model for unsupervised domain adaptation via causal representations.


Linked Causal Variational Autoencoder for Inferring Paired Spillover Effects

arXiv.org Machine Learning

Modeling spillover effects from observational data is an important problem in economics, business, and other fields of research. % It helps us infer the causality between two seemingly unrelated set of events. For example, if consumer spending in the United States declines, it has spillover effects on economies that depend on the U.S. as their largest export market. In this paper, we aim to infer the causation that results in spillover effects between pairs of entities (or units), we call this effect as \textit{paired spillover}. To achieve this, we leverage the recent developments in variational inference and deep learning techniques to propose a generative model called Linked Causal Variational Autoencoder (LCVA). Similar to variational autoencoders (VAE), LCVA incorporates an encoder neural network to learn the latent attributes and a decoder network to reconstruct the inputs. However, unlike VAE, LCVA treats the \textit{latent attributes as confounders that are assumed to affect both the treatment and the outcome of units}. Specifically, given a pair of units $u$ and $\bar{u}$, their individual treatment and outcomes, the encoder network of LCVA samples the confounders by conditioning on the observed covariates of $u$, the treatments of both $u$ and $\bar{u}$ and the outcome of $u$. Once inferred, the latent attributes (or confounders) of $u$ captures the spillover effect of $\bar{u}$ on $u$. Using a network of users from job training dataset (LaLonde (1986)) and co-purchase dataset from Amazon e-commerce domain, we show that LCVA is significantly more robust than existing methods in capturing spillover effects.