Goto

Collaborating Authors

 Monroy, Raul


Online Social Support Detection in Spanish Social Media Texts

arXiv.org Artificial Intelligence

The advent of social media has transformed communication, enabling individuals to share their experiences, seek support, and participate in diverse discussions. While extensive research has focused on identifying harmful content like hate speech, the recognition and promotion of positive and supportive interactions remain largely unexplored. This study proposes an innovative approach to detecting online social support in Spanish-language social media texts. We introduce the first annotated dataset specifically created for this task, comprising 3,189 YouTube comments classified as supportive or non-supportive. To address data imbalance, we employed GPT-4o to generate paraphrased comments and create a balanced dataset. We then evaluated social support classification using traditional machine learning models, deep learning architectures, and transformer-based models, including GPT-4o, but only on the unbalanced dataset. Subsequently, we utilized a transformer model to compare the performance between the balanced and unbalanced datasets. Our findings indicate that the balanced dataset yielded improved results for Task 2 (Individual and Group) and Task 3 (Nation, Other, LGBTQ, Black Community, Women, Religion), whereas GPT-4o performed best for Task 1 (Social Support and Non-Support). This study highlights the significance of fostering a supportive online environment and lays the groundwork for future research in automated social support detection.


Advanced Machine Learning Techniques for Social Support Detection on Social Media

arXiv.org Artificial Intelligence

The widespread use of social media highlights the need to understand its impact, particularly the role of online social support. This study uses a dataset focused on online social support, which includes binary and multiclass classifications of social support content on social media. The classification of social support is divided into three tasks. The first task focuses on distinguishing between supportive and non-supportive. The second task aims to identify whether the support is directed toward an individual or a group. The third task categorizes the specific type of social support, grouping it into categories such as Nation, LGBTQ, Black people, Women, Religion, and Other (if it does not fit into the previously mentioned categories). To address data imbalances in these tasks, we employed K-means clustering for balancing the dataset and compared the results with the original unbalanced data. Using advanced machine learning techniques, including transformers and zero-shot learning approaches with GPT3, GPT4, and GPT4-o, we predict social support levels in various contexts. The effectiveness of the dataset is evaluated using baseline models across different learning approaches, with transformer-based methods demonstrating superior performance. Additionally, we achieved a 0.4\% increase in the macro F1 score for the second task and a 0.7\% increase for the third task, compared to previous work utilizing traditional machine learning with psycholinguistic and unigram-based TF-IDF values.