Goto

Collaborating Authors

 Monperrus, Martin


RepairBench: Leaderboard of Frontier Models for Program Repair

arXiv.org Artificial Intelligence

AI-driven program repair uses AI models to repair buggy software by producing patches. Rapid advancements in AI surely impact state-of-the-art performance of program repair. Yet, grasping this progress requires frequent and standardized evaluations. We propose RepairBench, a novel leaderboard for AI-driven program repair. The key characteristics of RepairBench are: 1) it is execution-based: all patches are compiled and executed against a test suite, 2) it assesses frontier models in a frequent and standardized way. RepairBench leverages two high-quality benchmarks, Defects4J and GitBug-Java, to evaluate frontier models against real-world program repair tasks. We publicly release the evaluation framework of RepairBench. We will update the leaderboard as new frontier models are released.


ITER: Iterative Neural Repair for Multi-Location Patches

arXiv.org Artificial Intelligence

Automated program repair (APR) has achieved promising results, especially using neural networks. Yet, the overwhelming majority of patches produced by APR tools are confined to one single location. When looking at the patches produced with neural repair, most of them fail to compile, while a few uncompilable ones go in the right direction. In both cases, the fundamental problem is to ignore the potential of partial patches. In this paper, we propose an iterative program repair paradigm called ITER founded on the concept of improving partial patches until they become plausible and correct. First, ITER iteratively improves partial single-location patches by fixing compilation errors and further refining the previously generated code. Second, ITER iteratively improves partial patches to construct multi-location patches, with fault localization re-execution. ITER is implemented for Java based on battle-proven deep neural networks and code representation. ITER is evaluated on 476 bugs from 10 open-source projects in Defects4J 2.0. ITER succeeds in repairing 15.5% of them, including 9 uniquely repaired multi-location bugs.


CigaR: Cost-efficient Program Repair with LLMs

arXiv.org Artificial Intelligence

Large language models (LLM) have proven to be effective at automated program repair (APR). However, using LLMs can be costly, with companies invoicing users by the number of tokens. In this paper, we propose CigaR, the first LLM-based APR tool that focuses on minimizing the repair cost. CigaR works in two major steps: generating a first plausible patch and multiplying plausible patches. CigaR optimizes the prompts and the prompt setting to maximize the information given to LLMs using the smallest possible number of tokens. Our experiments on 429 bugs from the widely used Defects4J and HumanEval-Java datasets shows that CigaR reduces the token cost by 73%. On average, CigaR spends 127k tokens per bug while the baseline uses 467k tokens per bug. On the subset of bugs that are fixed by both, CigaR spends 20k per bug while the baseline uses 608k tokens, a cost saving of 96%. Our extensive experiments show that CigaR is a cost-effective LLM-based program repair tool that uses a low number of tokens to automatically generate patches.


DISL: Fueling Research with A Large Dataset of Solidity Smart Contracts

arXiv.org Artificial Intelligence

The DISL dataset features a collection of $514,506$ unique Solidity files that have been deployed to Ethereum mainnet. It caters to the need for a large and diverse dataset of real-world smart contracts. DISL serves as a resource for developing machine learning systems and for benchmarking software engineering tools designed for smart contracts. By aggregating every verified smart contract from Etherscan up to January 15, 2024, DISL surpasses existing datasets in size and recency.


Generative AI to Generate Test Data Generators

arXiv.org Artificial Intelligence

Generating fake data is an essential dimension of modern software testing, as demonstrated by the number and significance of data faking libraries. Yet, developers of faking libraries cannot keep up with the wide range of data to be generated for different natural languages and domains. In this paper, we assess the ability of generative AI for generating test data in different domains. We design three types of prompts for Large Language Models (LLMs), which perform test data generation tasks at different levels of integrability: 1) raw test data generation, 2) synthesizing programs in a specific language that generate useful test data, and 3) producing programs that use state-of-the-art faker libraries. We evaluate our approach by prompting LLMs to generate test data for 11 domains. The results show that LLMs can successfully generate realistic test data generators in a wide range of domains at all three levels of integrability.


RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair

arXiv.org Artificial Intelligence

Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.


Supersonic: Learning to Generate Source Code Optimizations in C/C++

arXiv.org Artificial Intelligence

Software optimization refines programs for resource efficiency while preserving functionality. Traditionally, it is a process done by developers and compilers. This paper introduces a third option, automated optimization at the source code level. We present Supersonic, a neural approach targeting minor source code modifications for optimization. Using a seq2seq model, Supersonic is trained on C/C++ program pairs ($x_{t}$, $x_{t+1}$), where $x_{t+1}$ is an optimized version of $x_{t}$, and outputs a diff. Supersonic's performance is benchmarked against OpenAI's GPT-3.5-Turbo and GPT-4 on competitive programming tasks. The experiments show that Supersonic not only outperforms both models on the code optimization task but also minimizes the extent of the change with a model more than 600x smaller than GPT-3.5-Turbo and 3700x smaller than GPT-4.


Self-Supervised Learning to Prove Equivalence Between Straight-Line Programs via Rewrite Rules

arXiv.org Artificial Intelligence

We target the problem of automatically synthesizing proofs of semantic equivalence between two programs made of sequences of statements. We represent programs using abstract syntax trees (AST), where a given set of semantics-preserving rewrite rules can be applied on a specific AST pattern to generate a transformed and semantically equivalent program. In our system, two programs are equivalent if there exists a sequence of application of these rewrite rules that leads to rewriting one program into the other. We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program pairs. The system outputs a sequence of rewrites, and the validity of the sequence is simply checked by verifying it can be applied. If no valid sequence is produced by the neural network, the system reports the programs as non-equivalent, ensuring by design no programs may be incorrectly reported as equivalent. Our system is fully implemented for one single grammar which can represent straight-line programs with function calls and multiple types. To efficiently train the system to generate such sequences, we develop an original incremental training technique, named self-supervised sample selection. We extensively study the effectiveness of this novel training approach on proofs of increasing complexity and length. Our system, S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programs.


Learning the Relation between Code Features and Code Transforms with Structured Prediction

arXiv.org Artificial Intelligence

To effectively guide the exploration of the code transform space for automated code evolution techniques, we present in this paper the first approach for structurally predicting code transforms at the level of AST nodes using conditional random fields (CRFs). Our approach first learns offline a probabilistic model that captures how certain code transforms are applied to certain AST nodes, and then uses the learned model to predict transforms for arbitrary new, unseen code snippets. {Our approach involves a novel representation of both programs and code transforms. Specifically, we introduce the formal framework for defining the so-called AST-level code transforms and we demonstrate how the CRF model can be accordingly designed, learned, and used for prediction}. We instantiate our approach in the context of repair transform prediction for Java programs. Our instantiation contains a set of carefully designed code features, deals with the training data imbalance issue, and comprises transform constraints that are specific to code. We conduct a large-scale experimental evaluation based on a dataset of bug fixing commits from real-world Java projects. The results show that when the popular evaluation metric \emph{top-3} is used, our approach predicts the code transforms with an accuracy varying from 41\% to 53\% depending on the transforms. Our model outperforms two baselines based on history probability and neural machine translation (NMT), suggesting the importance of considering code structure in achieving good prediction accuracy. In addition, a proof-of-concept synthesizer is implemented to concretize some repair transforms to get the final patches. The evaluation of the synthesizer on the Defects4j benchmark confirms the usefulness of the predicted AST-level repair transforms in producing high-quality patches.


A Literature Study of Embeddings on Source Code

arXiv.org Machine Learning

Natural language processing has improved tremendously after the success of word embedding techniques such as word2vec. Recently, the same idea has been applied on source code with encouraging results. In this survey, we aim to collect and discuss the usage of word embedding techniques on programs and source code. The articles in this survey have been collected by asking authors of related work and with an extensive search on Google Scholar. Each article is categorized into five categories: 1. embedding of tokens 2. embedding of functions or methods 3. embedding of sequences or sets of method calls 4. embedding of binary code 5. other embeddings. We also provide links to experimental data and show some remarkable visualization of code embeddings. In summary, word embedding has been successfully applied on different granularities of source code. With access to countless open-source repositories, we see a great potential of applying other data-driven natural language processing techniques on source code in the future.