Goto

Collaborating Authors

 Mondelli, Marco


Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence

arXiv.org Artificial Intelligence

The stochastic heavy ball method (SHB), also known as stochastic gradient descent (SGD) with Polyak's momentum, is widely used in training neural networks. However, despite the remarkable success of such algorithm in practice, its theoretical characterization remains limited. In this paper, we focus on neural networks with two and three layers and provide a rigorous understanding of the properties of the solutions found by SHB: \emph{(i)} stability after dropping out part of the neurons, \emph{(ii)} connectivity along a low-loss path, and \emph{(iii)} convergence to the global optimum. To achieve this goal, we take a mean-field view and relate the SHB dynamics to a certain partial differential equation in the limit of large network widths. This mean-field perspective has inspired a recent line of work focusing on SGD while, in contrast, our paper considers an algorithm with momentum. More specifically, after proving existence and uniqueness of the limit differential equations, we show convergence to the global optimum and give a quantitative bound between the mean-field limit and the SHB dynamics of a finite-width network. Armed with this last bound, we are able to establish the dropout-stability and connectivity of SHB solutions.


Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

arXiv.org Artificial Intelligence

Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.


Precise Asymptotics for Spectral Methods in Mixed Generalized Linear Models

arXiv.org Artificial Intelligence

In a mixed generalized linear model, the objective is to learn multiple signals from unlabeled observations: each sample comes from exactly one signal, but it is not known which one. We consider the prototypical problem of estimating two statistically independent signals in a mixed generalized linear model with Gaussian covariates. Spectral methods are a popular class of estimators which output the top two eigenvectors of a suitable data-dependent matrix. However, despite the wide applicability, their design is still obtained via heuristic considerations, and the number of samples $n$ needed to guarantee recovery is super-linear in the signal dimension $d$. In this paper, we develop exact asymptotics on spectral methods in the challenging proportional regime in which $n, d$ grow large and their ratio converges to a finite constant. By doing so, we are able to optimize the design of the spectral method, and combine it with a simple linear estimator, in order to minimize the estimation error. Our characterization exploits a mix of tools from random matrices, free probability and the theory of approximate message passing algorithms. Numerical simulations for mixed linear regression and phase retrieval display the advantage enabled by our analysis over existing designs of spectral methods.


Approximate Message Passing for Multi-Layer Estimation in Rotationally Invariant Models

arXiv.org Artificial Intelligence

We consider the problem of reconstructing the signal and the hidden variables from observations coming from a multi-layer network with rotationally invariant weight matrices. The multi-layer structure models inference from deep generative priors, and the rotational invariance imposed on the weights generalizes the i.i.d.\ Gaussian assumption by allowing for a complex correlation structure, which is typical in applications. In this work, we present a new class of approximate message passing (AMP) algorithms and give a state evolution recursion which precisely characterizes their performance in the large system limit. In contrast with the existing multi-layer VAMP (ML-VAMP) approach, our proposed AMP -- dubbed multi-layer rotationally invariant generalized AMP (ML-RI-GAMP) -- provides a natural generalization beyond Gaussian designs, in the sense that it recovers the existing Gaussian AMP as a special case. Furthermore, ML-RI-GAMP exhibits a significantly lower complexity than ML-VAMP, as the computationally intensive singular value decomposition is replaced by an estimation of the moments of the design matrices. Finally, our numerical results show that this complexity gain comes at little to no cost in the performance of the algorithm.


Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing

arXiv.org Machine Learning

We consider the problem of signal estimation in generalized linear models defined via rotationally invariant design matrices. Since these matrices can have an arbitrary spectral distribution, this model is well suited to capture complex correlation structures which often arise in applications. We propose a novel family of approximate message passing (AMP) algorithms for signal estimation, and rigorously characterize their performance in the high-dimensional limit via a state evolution recursion. Assuming knowledge of the design matrix spectrum, our rotationally invariant AMP has complexity of the same order as the existing AMP for Gaussian matrices; it also recovers the existing AMP as a special case. Numerical results showcase a performance close to Vector AMP (which is conjectured to be Bayes-optimal in some settings), but obtained with a much lower complexity, as the proposed algorithm does not require a computationally expensive singular value decomposition.


Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

arXiv.org Machine Learning

Understanding the properties of neural networks trained via stochastic gradient descent (SGD) is at the heart of the theory of deep learning. In this work, we take a mean-field view, and consider a two-layer ReLU network trained via SGD for a univariate regularized regression problem. Our main result is that SGD is biased towards a simple solution: at convergence, the ReLU network implements a piecewise linear map of the inputs, and the number of "knot" points - i.e., points where the tangent of the ReLU network estimator changes - between two consecutive training inputs is at most three. In particular, as the number of neurons of the network grows, the SGD dynamics is captured by the solution of a gradient flow and, at convergence, the distribution of the weights approaches the unique minimizer of a related free energy, which has a Gibbs form. Our key technical contribution consists in the analysis of the estimator resulting from this minimizer: we show that its second derivative vanishes everywhere, except at some specific locations which represent the "knot" points. We also provide empirical evidence that knots at locations distinct from the data points might occur, as predicted by our theory.


PCA Initialization for Approximate Message Passing in Rotationally Invariant Models

arXiv.org Machine Learning

We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.


On Connectivity of Solutions in Deep Learning: The Role of Over-parameterization and Feature Quality

arXiv.org Machine Learning

It has been empirically observed that, in deep neural networks, the solutions found by stochastic gradient descent from different random initializations can be often connected by a path with low loss. Recent works have shed light on this intriguing phenomenon by assuming either the over-parameterization of the network or the dropout stability of the solutions. In this paper, we reconcile these two views and present a novel condition for ensuring the connectivity of two arbitrary points in parameter space. This condition is provably milder than dropout stability, and it provides a connection between the problem of finding low-loss paths and the memorization capacity of neural nets. This last point brings about a trade-off between the quality of features at each layer and the over-parameterization of the network. As an extreme example of this trade-off, we show that (i) if subsets of features at each layer are linearly separable, then almost no over-parameterization is needed, and (ii) under generic assumptions on the features at each layer, it suffices that the last two hidden layers have $\Omega(\sqrt{N})$ neurons, $N$ being the number of samples. Finally, we provide experimental evidence demonstrating that the presented condition is satisfied in practical settings even when dropout stability does not hold.


Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks

arXiv.org Machine Learning

A recent line of work has analyzed the theoretical properties of deep neural networks via the Neural Tangent Kernel (NTK). In particular, the smallest eigenvalue of the NTK has been related to memorization capacity, convergence of gradient descent algorithms and generalization of deep nets. However, existing results either provide bounds in the two-layer setting or assume that the spectrum of the NTK is bounded away from 0 for multi-layer networks. In this paper, we provide tight bounds on the smallest eigenvalue of NTK matrices for deep ReLU networks, both in the limiting case of infinite widths and for finite widths. In the finite-width setting, the network architectures we consider are quite general: we require the existence of a wide layer with roughly order of $N$ neurons, $N$ being the number of data samples; and the scaling of the remaining widths is arbitrary (up to logarithmic factors). To obtain our results, we analyze various quantities of independent interest: we give lower bounds on the smallest singular value of feature matrices, and upper bounds on the Lipschitz constant of input-output feature maps.


Approximate Message Passing with Spectral Initialization for Generalized Linear Models

arXiv.org Machine Learning

We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main technical contribution is the construction and analysis of a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. Our analysis yields a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. We also provide numerical results that demonstrate the validity of the proposed approach.