Mondal, Rishabh
Space to Policy: Scalable Brick Kiln Detection and Automatic Compliance Monitoring with Geospatial Data
Patel, Zeel B, Mondal, Rishabh, Dubey, Shataxi, Jaiswal, Suraj, Guttikunda, Sarath, Batra, Nipun
Air pollution kills 7 million people annually. The brick kiln sector significantly contributes to economic development but also accounts for 8-14\% of air pollution in India. Policymakers have implemented compliance measures to regulate brick kilns. Emission inventories are critical for air quality modeling and source apportionment studies. However, the largely unorganized nature of the brick kiln sector necessitates labor-intensive survey efforts for monitoring. Recent efforts by air quality researchers have relied on manual annotation of brick kilns using satellite imagery to build emission inventories, but this approach lacks scalability. Machine-learning-based object detection methods have shown promise for detecting brick kilns; however, previous studies often rely on costly high-resolution imagery and fail to integrate with governmental policies. In this work, we developed a scalable machine-learning pipeline that detected and classified 30638 brick kilns across five states in the Indo-Gangetic Plain using free, moderate-resolution satellite imagery from Planet Labs. Our detections have a high correlation with on-ground surveys. We performed automated compliance analysis based on government policies. In the Delhi airshed, stricter policy enforcement has led to the adoption of efficient brick kiln technologies. This study highlights the need for inclusive policies that balance environmental sustainability with the livelihoods of workers.
Recall-driven Precision Refinement: Unveiling Accurate Fall Detection using LSTM
Mondal, Rishabh, Ghosal, Prasun
This paper presents an innovative approach to address the pressing concern of fall incidents among the elderly by developing an accurate fall detection system. Our proposed system combines state-of-the-art technologies, including accelerometer and gyroscope sensors, with deep learning models, specifically Long Short-Term Memory (LSTM) networks. Real-time execution capabilities are achieved through the integration of Raspberry Pi hardware. We introduce pruning techniques that strategically fine-tune the LSTM model's architecture and parameters to optimize the system's performance. We prioritize recall over precision, aiming to accurately identify falls and minimize false negatives for timely intervention. Extensive experimentation and meticulous evaluation demonstrate remarkable performance metrics, emphasizing a high recall rate while maintaining a specificity of 96\%. Our research culminates in a state-of-the-art fall detection system that promptly sends notifications, ensuring vulnerable individuals receive timely assistance and improve their overall well-being. Applying LSTM models and incorporating pruning techniques represent a significant advancement in fall detection technology, offering an effective and reliable fall prevention and intervention solution.