Goto

Collaborating Authors

 Mondal, Joyanta Jyoti


E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity Prediction

arXiv.org Artificial Intelligence

Accurate prediction of CB2 receptor ligand activity is pivotal for advancing drug discovery targeting this receptor, which is implicated in inflammation, pain management, and neurodegenerative conditions. Although conventional machine learning and deep learning techniques have shown promise, their limited interpretability remains a significant barrier to rational drug design. In this work, we introduce CB2former, a framework that combines a Graph Convolutional Network with a Transformer architecture to predict CB2 receptor ligand activity. By leveraging the Transformer's self attention mechanism alongside the GCN's structural learning capability, CB2former not only enhances predictive performance but also offers insights into the molecular features underlying receptor activity. We benchmark CB2former against diverse baseline models including Random Forest, Support Vector Machine, K Nearest Neighbors, Gradient Boosting, Extreme Gradient Boosting, Multilayer Perceptron, Convolutional Neural Network, and Recurrent Neural Network and demonstrate its superior performance with an R squared of 0.685, an RMSE of 0.675, and an AUC of 0.940. Moreover, attention weight analysis reveals key molecular substructures influencing CB2 receptor activity, underscoring the model's potential as an interpretable AI tool for drug discovery. This ability to pinpoint critical molecular motifs can streamline virtual screening, guide lead optimization, and expedite therapeutic development. Overall, our results showcase the transformative potential of advanced AI approaches exemplified by CB2former in delivering both accurate predictions and actionable molecular insights, thus fostering interdisciplinary collaboration and innovation in drug discovery.


Med-IC: Fusing a Single Layer Involution with Convolutions for Enhanced Medical Image Classification and Segmentation

arXiv.org Artificial Intelligence

The majority of medical images, especially those that resemble cells, have similar characteristics. These images, which occur in a variety of shapes, often show abnormalities in the organ or cell region. The convolution operation possesses a restricted capability to extract visual patterns across several spatial regions of an image. The involution process, which is the inverse operation of convolution, complements this inherent lack of spatial information extraction present in convolutions. In this study, we investigate how applying a single layer of involution prior to a convolutional neural network (CNN) architecture can significantly improve classification and segmentation performance, with a comparatively negligible amount of weight parameters. The study additionally shows how excessive use of involution layers might result in inaccurate predictions in a particular type of medical image. According to our findings from experiments, the strategy of adding only a single involution layer before a CNN-based model outperforms most of the previous works.


Uncovering local aggregated air quality index with smartphone captured images leveraging efficient deep convolutional neural network

arXiv.org Artificial Intelligence

The prevalence and mobility of smartphones make these a widely used tool for environmental health research. However, their potential for determining aggregated air quality index (AQI) based on PM2.5 concentration in specific locations remains largely unexplored in the existing literature. In this paper, we thoroughly examine the challenges associated with predicting location-specific PM2.5 concentration using images taken with smartphone cameras. The focus of our study is on Dhaka, the capital of Bangladesh, due to its significant air pollution levels and the large population exposed to it. Our research involves the development of a Deep Convolutional Neural Network (DCNN), which we train using over a thousand outdoor images taken and annotated. These photos are captured at various locations in Dhaka, and their labels are based on PM2.5 concentration data obtained from the local US consulate, calculated using the NowCast algorithm. Through supervised learning, our model establishes a correlation index during training, enhancing its ability to function as a Picture-based Predictor of PM2.5 Concentration (PPPC). This enables the algorithm to calculate an equivalent daily averaged AQI index from a smartphone image. Unlike, popular overly parameterized models, our model shows resource efficiency since it uses fewer parameters. Furthermore, test results indicate that our model outperforms popular models like ViT and INN, as well as popular CNN-based models such as VGG19, ResNet50, and MobileNetV2, in predicting location-specific PM2.5 concentration. Our dataset is the first publicly available collection that includes atmospheric images and corresponding PM2.5 measurements from Dhaka. Our codes and dataset are available at https://github.com/lepotatoguy/aqi.


Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) have significantly advanced various domains, but their vulnerability to adversarial attacks poses serious concerns. Understanding these vulnerabilities and developing effective defense mechanisms is crucial. DeepFool, an algorithm proposed by Moosavi-Dezfooli et al. (2016), finds minimal perturbations to misclassify input images. However, DeepFool lacks a targeted approach, making it less effective in specific attack scenarios. Also, in previous related works, researchers primarily focus on success, not considering how much an image is getting distorted; the integrity of the image quality, and the confidence level to misclassifying. So, in this paper, we propose Enhanced Targeted DeepFool, an augmented version of DeepFool that allows targeting specific classes for misclassification and also introduce a minimum confidence score requirement hyperparameter to enhance flexibility. Our experiments demonstrate the effectiveness and efficiency of the proposed method across different deep neural network architectures while preserving image integrity as much and perturbation rate as less as possible. By using our approach, the behavior of models can be manipulated arbitrarily using the perturbed images, as we can specify both the target class and the associated confidence score, unlike other DeepFool-derivative works, such as Targeted DeepFool by Gajjar et al. (2022). Results show that one of the deep convolutional neural network architectures, AlexNet, and one of the state-of-the-art model Vision Transformer exhibit high robustness to getting fooled. This approach can have larger implication, as our tuning of confidence level can expose the robustness of image recognition models. Our code will be made public upon acceptance of the paper.