Mollick, Md. Abu Ahnaf
A CNN Approach to Automated Detection and Classification of Brain Tumors
Hasan, Md. Zahid, Tamim, Abdullah, Asadujjaman, D. M., Rahman, Md. Mahfujur, Mollick, Md. Abu Ahnaf, Dristi, Nosin Anjum, Abdullah-Al-Noman, null
Brain tumors require an assessment to ensure timely diagnosis and effective patient treatment. Morphological factors such as size, location, texture, and variable appearance com- plicate tumor inspection. Medical imaging presents challenges, including noise and incomplete images. This research article presents a methodology for processing Magnetic Resonance Imag- ing (MRI) data, encompassing techniques for image classification and denoising. The effective use of MRI images allows medical professionals to detect brain disorders, including tumors. This research aims to categorize healthy brain tissue and brain tumors by analyzing the provided MRI data. Unlike alternative methods like Computed Tomography (CT), MRI technology offers a more detailed representation of internal anatomical components, mak- ing it a suitable option for studying data related to brain tumors. The MRI picture is first subjected to a denoising technique utilizing an Anisotropic diffusion filter. The dataset utilized for the models creation is a publicly accessible and validated Brain Tumour Classification (MRI) database, comprising 3,264 brain MRI scans. SMOTE was employed for data augmentation and dataset balancing. Convolutional Neural Networks(CNN) such as ResNet152V2, VGG, ViT, and EfficientNet were employed for the classification procedure. EfficientNet attained an accuracy of 98%, the highest recorded.
Detection and Classification of Acute Lymphoblastic Leukemia Utilizing Deep Transfer Learning
Mollick, Md. Abu Ahnaf, Rahman, Md. Mahfujur, Asadujjaman, D. M., Tamim, Abdullah, Dristi, Nosin Anjum, Hossen, Md. Takbir
A mutation in the DNA of a single cell that compromises its function initiates leukemia,leading to the overproduction of immature white blood cells that encroach upon the space required for the generation of healthy blood cells.Leukemia is treatable if identified in its initial stages. However,its diagnosis is both arduous and time consuming. This study proposes a novel approach for diagnosing leukemia across four stages Benign,Early,Pre,and Pro using deep learning techniques.We employed two Convolutional Neural Network (CNN) models as MobileNetV2 with an altered head and a custom model. The custom model consists of multiple convolutional layers,each paired with corresponding max pooling layers.We utilized MobileNetV2 with ImageNet weights,adjusting the head to integrate the final results.The dataset used is the publicly available "Acute Lymphoblastic Leukemia (ALL) Image Dataset", and we applied the Synthetic Minority Oversampling Technique (SMOTE) to augment and balance the training dataset.The custom model achieved an accuracy of 98.6%, while MobileNetV2 attained a superior accuracy of 99.69%. The pretrained model showed promising results,indicating an increased likelihood of real-world application.