Goto

Collaborating Authors

 Mohsenin, Tinoosh


Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning

arXiv.org Artificial Intelligence

With the growing computational capabilities of microcontroller units (MCUs), edge devices can now support machine learning models. However, deploying decentralised federated learning (DFL) on such devices presents key challenges, including intermittent connectivity, limited communication range, and dynamic network topologies. This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Stochastic Gradient Descent (GD PSGD), designed to address these issues in resource-constrained environments. The framework incorporates a hierarchical communication structure using Distributed Kmeans (DKmeans) clustering for geographic grouping and a gossip protocol for efficient model aggregation across two layers: intra-cluster and inter-cluster. We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline using the MCUNet model on the CIFAR-10 dataset under IID and Non-IID conditions. Results demonstrate that the proposed method achieves comparable accuracy to CFL on IID datasets, requiring only 1.8 additional rounds for convergence. On Non-IID datasets, the accuracy loss remains under 8\% for moderate data imbalance. These findings highlight the framework's potential to support scalable and privacy-preserving learning on edge devices with minimal performance trade-offs.


Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons

arXiv.org Artificial Intelligence

Tiny Machine Learning (TinyML) has become a growing field in on-device processing for Internet of Things (IoT) applications, capitalizing on AI algorithms that are optimized for their low complexity and energy efficiency. These algorithms are designed to minimize power and memory footprints, making them ideal for the constraints of IoT devices. Within this domain, Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML, owning to their event-driven processing paradigm which offers an efficient method of handling dataflow. This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model to efficiently deploy vision-based ML algorithms on TinyML systems. A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA. To evaluate the proposed model, a collision avoidance dataset is considered as a case study. The proposed SNN model is compared to the state-of-the-art works and Binarized Convolutional Neural Network (BCNN) as a baseline. The results show the proposed approach is 86% more energy efficient than the baseline.


TinyM$^2$Net-V3: Memory-Aware Compressed Multimodal Deep Neural Networks for Sustainable Edge Deployment

arXiv.org Artificial Intelligence

The advancement of sophisticated artificial intelligence (AI) algorithms has led to a notable increase in energy usage and carbon dioxide emissions, intensifying concerns about climate change. This growing problem has brought the environmental sustainability of AI technologies to the forefront, especially as they expand across various sectors. In response to these challenges, there is an urgent need for the development of sustainable AI solutions. These solutions must focus on energy-efficient embedded systems that are capable of handling diverse data types even in environments with limited resources, thereby ensuring both technological progress and environmental responsibility. Integrating complementary multimodal data into tiny machine learning models for edge devices is challenging due to increased complexity, latency, and power consumption. This work introduces TinyM$^2$Net-V3, a system that processes different modalities of complementary data, designs deep neural network (DNN) models, and employs model compression techniques including knowledge distillation and low bit-width quantization with memory-aware considerations to fit models within lower memory hierarchy levels, reducing latency and enhancing energy efficiency on resource-constrained devices. We evaluated TinyM$^2$Net-V3 in two multimodal case studies: COVID-19 detection using cough, speech, and breathing audios, and pose classification from depth and thermal images. With tiny inference models (6 KB and 58 KB), we achieved 92.95% and 90.7% accuracies, respectively. Our tiny machine learning models, deployed on resource limited hardware, demonstrated low latencies within milliseconds and very high power efficiency.


TinyVQA: Compact Multimodal Deep Neural Network for Visual Question Answering on Resource-Constrained Devices

arXiv.org Artificial Intelligence

Traditional machine learning models often require powerful hardware, making them unsuitable for deployment on resource-limited devices. Tiny Machine Learning (tinyML) has emerged as a promising approach for running machine learning models on these devices, but integrating multiple data modalities into tinyML models still remains a challenge due to increased complexity, latency, and power consumption. This paper proposes TinyVQA, a novel multimodal deep neural network for visual question answering tasks that can be deployed on resource-constrained tinyML hardware. TinyVQA leverages a supervised attention-based model to learn how to answer questions about images using both vision and language modalities. Distilled knowledge from the supervised attention-based VQA model trains the memory aware compact TinyVQA model and low bit-width quantization technique is employed to further compress the model for deployment on tinyML devices. The TinyVQA model was evaluated on the FloodNet dataset, which is used for post-disaster damage assessment. The compact model achieved an accuracy of 79.5%, demonstrating the effectiveness of TinyVQA for real-world applications. Additionally, the model was deployed on a Crazyflie 2.0 drone, equipped with an AI deck and GAP8 microprocessor. The TinyVQA model achieved low latencies of 56 ms and consumes 693 mW power while deployed on the tiny drone, showcasing its suitability for resource-constrained embedded systems.


LLM Augmented Hierarchical Agents

arXiv.org Artificial Intelligence

Solving long-horizon, temporally-extended tasks using Reinforcement Learning (RL) is challenging, compounded by the common practice of learning without prior knowledge (or tabula rasa learning). Humans can generate and execute plans with temporally-extended actions and quickly learn to perform new tasks because we almost never solve problems from scratch. We want autonomous agents to have this same ability. Recently, LLMs have been shown to encode a tremendous amount of knowledge about the world and to perform impressive in-context learning and reasoning. However, using LLMs to solve real world problems is hard because they are not grounded in the current task. In this paper we exploit the planning capabilities of LLMs while using RL to provide learning from the environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon tasks. Instead of completely relying on LLMs, they guide a high-level policy, making learning significantly more sample efficient. This approach is evaluated in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a real robot arm in block manipulation tasks. We show that agents trained using our approach outperform other baselines methods and, once trained, don't need access to LLMs during deployment.


ReProHRL: Towards Multi-Goal Navigation in the Real World using Hierarchical Agents

arXiv.org Artificial Intelligence

Robots have been successfully used to perform tasks with high precision. In real-world environments with sparse rewards and multiple goals, learning is still a major challenge and Reinforcement Learning (RL) algorithms fail to learn good policies. Training in simulation environments and then fine-tuning in the real world is a common approach. However, adapting to the real-world setting is a challenge. In this paper, we present a method named Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning. We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world. Empirical results show that the proposed ReProHRL method outperforms the state-of-the-art baseline in simulation and real-world environments in terms of both training time and performance. Although both methods achieve a 100% success rate in a simple environment for single goal-based navigation, in a more complex environment and multi-goal setting, the proposed method outperforms the baseline by 18% and 5%, respectively. For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera to perform multi-goal navigation experiments.


Harnessing the Power of Explanations for Incremental Training: A LIME-Based Approach

arXiv.org Artificial Intelligence

Explainability of neural network prediction is essential to understand feature importance and gain interpretable insight into neural network performance. However, explanations of neural network outcomes are mostly limited to visualization, and there is scarce work that looks to use these explanations as feedback to improve model performance. In this work, model explanations are fed back to the feed-forward training to help the model generalize better. To this extent, a custom weighted loss where the weights are generated by considering the Euclidean distances between true LIME (Local Interpretable Model-Agnostic Explanations) explanations and model-predicted LIME explanations is proposed. Also, in practical training scenarios, developing a solution that can help the model learn sequentially without losing information on previous data distribution is imperative due to the unavailability of all the training data at once. Thus, the framework incorporates the custom weighted loss with Elastic Weight Consolidation (EWC) to maintain performance in sequential testing sets. The proposed custom training procedure results in a consistent enhancement of accuracy ranging from 0.5% to 1.5% throughout all phases of the incremental learning setup compared to traditional loss-based training methods for the keyword spotting task using the Google Speech Commands dataset.


Interactive Hierarchical Guidance using Language

arXiv.org Artificial Intelligence

Reinforcement learning has been successful in many tasks ranging from robotic control, games, energy management etc. In complex real world environments with sparse rewards and long task horizons, sample efficiency is still a major challenge. Most complex tasks can be easily decomposed into high-level planning and low level control. Therefore, it is important to enable agents to leverage the hierarchical structure and decompose bigger tasks into multiple smaller sub-tasks. We introduce an approach where we use language to specify sub-tasks and a high-level planner issues language commands to a low level controller. The low-level controller executes the sub-tasks based on the language commands. Our experiments show that this method is able to solve complex long horizon planning tasks with limited human supervision. Using language has added benefit of interpretability and ability for expert humans to take over the high-level planning task and provide language commands if necessary.


Cluster-Based Partitioning of Convolutional Neural Networks, A Solution for Computational Energy and Complexity Reduction

arXiv.org Machine Learning

In this paper, we propose a novel solution to reduce the computational complexity of convolutional neural network models used for many class image classification. Our proposed model breaks the classification task into three stages: 1) general feature extraction, 2) Mid-level clustering, and 3) hyper-class classification. Steps 1 and 2 could be repeated to build larger hierarchical models. We illustrate that our proposed classifier can reach the level of accuracy reported by the best in class classification models with far less computational complexity (Flop Count) by only activating parts of the model that are needed for the image classification.


Learning from Observations Using a Single Video Demonstration and Human Feedback

arXiv.org Machine Learning

In this paper, we present a method for learning from video demonstrations by using human feedback to construct a mapping between the standard representation of the agent and the visual representation of the demonstration. In this way, we leverage the advantages of both these representations, i.e., we learn the policy using standard state representations, but are able to specify the expected behavior using video demonstration. We train an autonomous agent using a single video demonstration and use human feedback (using numerical similarity rating) to map the standard representation to the visual representation with a neural network. We show the effectiveness of our method by teaching a hopper agent in the MuJoCo to perform a backflip using a single video demonstration generated in MuJoCo as well as from a real-world YouTube video of a person performing a backflip. Additionally, we show that our method can transfer to new tasks, such as hopping, with very little human feedback.