Mohsen, Farida
Improving diagnosis and prognosis of lung cancer using vision transformers: A scoping review
Ali, Hazrat, Mohsen, Farida, Shah, Zubair
Vision transformer-based methods are advancing the field of medical artificial intelligence and cancer imaging, including lung cancer applications. Recently, many researchers have developed vision transformer-based AI methods for lung cancer diagnosis and prognosis. This scoping review aims to identify the recent developments on vision transformer-based AI methods for lung cancer imaging applications. It provides key insights into how vision transformers complemented the performance of AI and deep learning methods for lung cancer. Furthermore, the review also identifies the datasets that contributed to advancing the field. Of the 314 retrieved studies, this review included 34 studies published from 2020 to 2022. The most commonly addressed task in these studies was the classification of lung cancer types, such as lung squamous cell carcinoma versus lung adenocarcinoma, and identifying benign versus malignant pulmonary nodules. Other applications included survival prediction of lung cancer patients and segmentation of lungs. The studies lacked clear strategies for clinical transformation. SWIN transformer was a popular choice of the researchers; however, many other architectures were also reported where vision transformer was combined with convolutional neural networks or UNet model. It can be concluded that vision transformer-based models are increasingly in popularity for developing AI methods for lung cancer applications. However, their computational complexity and clinical relevance are important factors to be considered for future research work. This review provides valuable insights for researchers in the field of AI and healthcare to advance the state-of-the-art in lung cancer diagnosis and prognosis. We provide an interactive dashboard on lung-cancer.onrender.com/.
Artificial Intelligence-Based Methods for Precision Medicine: Diabetes Risk Prediction
Mohsen, Farida, Al-Absi, Hamada R. H., Yousri, Noha A., Hajj, Nady El, Shah, Zubair
The rising prevalence of type 2 diabetes mellitus (T2DM) necessitates the development of predictive models for T2DM risk assessment. Artificial intelligence (AI) models are being extensively used for this purpose, but a comprehensive review of their advancements and challenges is lacking. This scoping review analyzes existing literature on AI-based models for T2DM risk prediction. Forty studies were included, mainly published in the past four years. Traditional machine learning models were more prevalent than deep learning models. Electronic health records were the most commonly used data source. Unimodal AI models relying on EHR data were prominent, while only a few utilized multimodal models. Both unimodal and multimodal models showed promising performance, with the latter outperforming the former. Internal validation was common, while external validation was limited. Interpretability methods were reported in half of the studies. Few studies reported novel biomarkers, and open-source code availability was limited. This review provides insights into the current state and limitations of AI-based T2DM risk prediction models and highlights challenges for their development and clinical implementation.