Not enough data to create a plot.
Try a different view from the menu above.
Mohan, Karthika
Do Finetti: On Causal Effects for Exchangeable Data
Guo, Siyuan, Zhang, Chi, Mohan, Karthika, Huszár, Ferenc, Schölkopf, Bernhard
We study causal effect estimation in a setting where the data are not i.i.d. (independent and identically distributed). We focus on exchangeable data satisfying an assumption of independent causal mechanisms. Traditional causal effect estimation frameworks, e.g., relying on structural causal models and do-calculus, are typically limited to i.i.d. data and do not extend to more general exchangeable generative processes, which naturally arise in multi-environment data. To address this gap, we develop a generalized framework for exchangeable data and introduce a truncated factorization formula that facilitates both the identification and estimation of causal effects in our setting. To illustrate potential applications, we introduce a causal P\'olya urn model and demonstrate how intervention propagates effects in exchangeable data settings. Finally, we develop an algorithm that performs simultaneous causal discovery and effect estimation given multi-environment data.
Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data
Mohan, Karthika, Pearl, Judea
We address the problem of deciding whether a causal or probabilistic query is estimable from data corrupted by missing entries, given a model of missingness process. We extend the results of Mohan et al, 2013 by presenting more general conditions for recovering probabilistic queries of the form P(y|x) and P(y,x) as well as causal queries of the form P(y|do(x)). We show that causal queries may be recoverable even when the factors in their identifying estimands are not recoverable. Specifically, we derive graphical conditions for recovering causal effects of the form P(y|do(x)) when Y and its missingness mechanism are not d-separable. Finally, we apply our results to problems of attrition and characterize the recovery of causal effects from data corrupted by attrition.
Graphical Models for Inference with Missing Data
Mohan, Karthika, Pearl, Judea, Tian, Jin
We address the problem of deciding whether there exists a consistent estimator of a given relation Q, when data are missing not at random. We employ a formal representation called `Missingness Graphs' to explicitly portray the causal mechanisms responsible for missingness and to encode dependencies between these mechanisms and the variables being measured. Using this representation, we define the notion of \textit{recoverability} which ensures that, for a given missingness-graph $G$ and a given query $Q$ an algorithm exists such that in the limit of large samples, it produces an estimate of $Q$ \textit{as if} no data were missing. We further present conditions that the graph should satisfy in order for recoverability to hold and devise algorithms to detect the presence of these conditions.