Mizuno, Takayuki
Generating In-store Customer Journeys from Scratch with GPT Architectures
Horikomi, Taizo, Mizuno, Takayuki
We propose a method that can generate customer trajectories and purchasing behaviors in retail stores simultaneously using Transformer-based deep learning structure. Utilizing customer trajectory data, layout diagrams, and retail scanner data obtained from a retail store, we trained a GPT-2 architecture from scratch to generate indoor trajectories and purchase actions. Additionally, we explored the effectiveness of fine-tuning the pre-trained model with data from another store. Results demonstrate that our method reproduces in-store trajectories and purchase behaviors more accurately than LSTM and SVM models, with fine-tuning significantly reducing the required training data.
Generating Individual Trajectories Using GPT-2 Trained from Scratch on Encoded Spatiotemporal Data
Horikomi, Taizo, Fujimoto, Shouji, Ishikawa, Atushi, Mizuno, Takayuki
We encapsulate an individual daily trajectory as a sequence of tokens by adding unique time interval tokens to the location tokens. Using the architecture of an autoregressive language model, GPT-2, this sequence of tokens is trained from scratch, allowing us to construct a deep learning model that sequentially generates an individual daily trajectory. Environmental factors such as meteorological conditions and individual attributes such as gender and age are symbolized by unique special tokens, and by training these tokens and trajectories on the GPT-2 architecture, we can generate trajectories that are influenced by both environmental factors and individual attributes.
Nondiagonal Mixture of Dirichlet Network Distributions for Analyzing a Stock Ownership Network
Zhang, Wenning, Hisano, Ryohei, Ohnishi, Takaaki, Mizuno, Takayuki
Block modeling is widely used in studies on complex networks. The cornerstone model is the stochastic block model (SBM), widely used over the past decades. However, the SBM is limited in analyzing complex networks as the model is, in essence, a random graph model that cannot reproduce the basic properties of many complex networks, such as sparsity and heavy-tailed degree distribution. In this paper, we provide an edge exchangeable block model that incorporates such basic features and simultaneously infers the latent block structure of a given complex network. Our model is a Bayesian nonparametric model that flexibly estimates the number of blocks and takes into account the possibility of unseen nodes. Using one synthetic dataset and one real-world stock ownership dataset, we show that our model outperforms state-of-the-art SBMs for held-out link prediction tasks.
Predicting Adverse Media Risk using a Heterogeneous Information Network
Hisano, Ryohei, Sornette, Didier, Mizuno, Takayuki
The media plays a central role in monitoring powerful institutions and identifying any activities harmful to the public interest. In the investing sphere constituted of 46,583 officially listed domestic firms on the stock exchanges worldwide, there is a growing interest `to do the right thing', i.e., to put pressure on companies to improve their environmental, social and government (ESG) practices. However, how to overcome the sparsity of ESG data from non-reporting firms, and how to identify the relevant information in the annual reports of this large universe? Here, we construct a vast heterogeneous information network that covers the necessary information surrounding each firm, which is assembled using seven professionally curated datasets and two open datasets, resulting in about 50 million nodes and 400 million edges in total. Exploiting this heterogeneous information network, we propose a model that can learn from past adverse media coverage patterns and predict the occurrence of future adverse media coverage events on the whole universe of firms. Our approach is tested using the adverse media coverage data of more than 35,000 firms worldwide from January 2012 to May 2018. Comparing with state-of-the-art methods with and without the network, we show that the predictive accuracy is substantially improved when using the heterogeneous information network. This work suggests new ways to consolidate the diffuse information contained in big data in order to monitor dominant institutions on a global scale for more socially responsible investment, better risk management, and the surveillance of powerful institutions.
High quality topic extraction from business news explains abnormal financial market volatility
Hisano, Ryohei, Sornette, Didier, Mizuno, Takayuki, Ohnishi, Takaaki, Watanabe, Tsutomu
Understanding the mutual relationships between information flows and social activity in society today is one of the cornerstones of the social sciences. In financial economics, the key issue in this regard is understanding and quantifying how news of all possible types (geopolitical, environmental, social, financial, economic, etc.) affect trading and the pricing of firms in organized stock markets. In this article, we seek to address this issue by performing an analysis of more than 24 million news records provided by Thompson Reuters and of their relationship with trading activity for 206 major stocks in the S&P US stock index. We show that the whole landscape of news that affect stock price movements can be automatically summarized via simple regularized regressions between trading activity and news information pieces decomposed, with the help of simple topic modeling techniques, into their "thematic" features. Using these methods, we are able to estimate and quantify the impacts of news on trading. We introduce network-based visualization techniques to represent the whole landscape of news information associated with a basket of stocks. The examination of the words that are representative of the topic distributions confirms that our method is able to extract the significant pieces of information influencing the stock market. Our results show that one of the most puzzling stylized fact in financial economies, namely that at certain times trading volumes appear to be "abnormally large," can be partially explained by the flow of news. In this sense, our results prove that there is no "excess trading," when restricting to times when news are genuinely novel and provide relevant financial information.