Mittal, Sparsh
Comparison of Machine Learning Approaches for Classifying Spinodal Events
Malviya, Ashwini, Mittal, Sparsh
In this work, we compare the performance of deep learning models for classifying the spinodal dataset. We evaluate state-of-the-art models (MobileViT, NAT, EfficientNet, CNN), alongside several ensemble models (majority voting, AdaBoost). Additionally, we explore the dataset in a transformed color space. Our findings show that NAT and MobileViT outperform other models, achieving the highest metrics-accuracy, AUC, and F1 score on both training and testing data (NAT: 94.65, 0.98, 0.94; MobileViT: 94.20, 0.98, 0.94), surpassing the earlier CNN model (88.44, 0.95, 0.88). We also discuss failure cases for the top performing models.
Hybrid Quantum Neural Network based Indoor User Localization using Cloud Quantum Computing
Mittal, Sparsh, Chand, Yash, Kundu, Neel Kanth
This paper proposes a hybrid quantum neural network (HQNN) for indoor user localization using received signal strength indicator (RSSI) values. We use publicly available RSSI datasets for indoor localization using WiFi, Bluetooth, and Zigbee to test the performance of the proposed HQNN. We also compare the performance of the HQNN with the recently proposed quantum fingerprinting-based user localization method. Our results show that the proposed HQNN performs better than the quantum fingerprinting algorithm since the HQNN has trainable parameters in the quantum circuits, whereas the quantum fingerprinting algorithm uses a fixed quantum circuit to calculate the similarity between the test data point and the fingerprint dataset. Unlike prior works, we also test the performance of the HQNN and quantum fingerprint algorithm on a real IBM quantum computer using cloud quantum computing services. Therefore, this paper examines the performance of the HQNN on noisy intermediate scale (NISQ) quantum devices using real-world RSSI localization datasets. The novelty of our approach lies in the use of simple feature maps and ansatz with fewer neurons, alongside testing on actual quantum hardware using real-world data, demonstrating practical applicability in real-world scenarios.
D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods
Susladkar, Onkar, Deshmukh, Gayatri, Mittal, Sparsh, Shastri, Parth
In image processing, one of the most challenging tasks is to render an image's semantic meaning using a variety of artistic approaches. Existing techniques for arbitrary style transfer (AST) frequently experience mode-collapse, over-stylization, or under-stylization due to a disparity between the style and content images. We propose a novel framework called D$^2$Styler (Discrete Diffusion Styler) that leverages the discrete representational capability of VQ-GANs and the advantages of discrete diffusion, including stable training and avoidance of mode collapse. Our method uses Adaptive Instance Normalization (AdaIN) features as a context guide for the reverse diffusion process. This makes it easy to move features from the style image to the content image without bias. The proposed method substantially enhances the visual quality of style-transferred images, allowing the combination of content and style in a visually appealing manner. We take style images from the WikiArt dataset and content images from the COCO dataset. Experimental results demonstrate that D$^2$Styler produces high-quality style-transferred images and outperforms twelve existing methods on nearly all the metrics. The qualitative results and ablation studies provide further insights into the efficacy of our technique. The code is available at https://github.com/Onkarsus13/D2Styler.
Harmonized Spatial and Spectral Learning for Robust and Generalized Medical Image Segmentation
Gorade, Vandan, Mittal, Sparsh, Jha, Debesh, Singhal, Rekha, Bagci, Ulas
Deep learning has demonstrated remarkable achievements in medical image segmentation. However, prevailing deep learning models struggle with poor generalization due to (i) intra-class variations, where the same class appears differently in different samples, and (ii) inter-class independence, resulting in difficulties capturing intricate relationships between distinct objects, leading to higher false negative cases. This paper presents a novel approach that synergies spatial and spectral representations to enhance domain-generalized medical image segmentation. We introduce the innovative Spectral Correlation Coefficient objective to improve the model's capacity to capture middle-order features and contextual long-range dependencies. This objective complements traditional spatial objectives by incorporating valuable spectral information. Extensive experiments reveal that optimizing this objective with existing architectures like UNet and TransUNet significantly enhances generalization, interpretability, and noise robustness, producing more confident predictions. For instance, in cardiac segmentation, we observe a 0.81 pp and 1.63 pp (pp = percentage point) improvement in DSC over UNet and TransUNet, respectively. Our interpretability study demonstrates that, in most tasks, objectives optimized with UNet outperform even TransUNet by introducing global contextual information alongside local details. These findings underscore the versatility and effectiveness of our proposed method across diverse imaging modalities and medical domains.
SPEEDNet: Salient Pyramidal Enhancement Encoder-Decoder Network for Colonoscopy Images
Sahu, Tushir, Bhatt, Vidhi, R, Sai Chandra Teja, Mittal, Sparsh, S, Nagesh Kumar
Accurate identification and precise delineation of regions of significance, such as tumors or lesions, is a pivotal goal in medical imaging analysis. This paper proposes SPEEDNet, a novel architecture for precisely segmenting lesions within colonoscopy images. SPEEDNet uses a novel block named Dilated-Involutional Pyramidal Convolution Fusion (DIPC). A DIPC block combines the dilated involution layers pairwise into a pyramidal structure to convert the feature maps into a compact space. This lowers the total number of parameters while improving the learning of representations across an optimal receptive field, thereby reducing the blurring effect. On the EBHISeg dataset, SPEEDNet outperforms three previous networks: UNet, FeedNet, and AttesResDUNet. Specifically, SPEEDNet attains an average dice score of 0.952 and a recall of 0.971. Qualitative results and ablation studies provide additional insights into the effectiveness of SPEEDNet. The model size of SPEEDNet is 9.81 MB, significantly smaller than that of UNet (22.84 MB), FeedNet(185.58 MB), and AttesResDUNet (140.09 MB).
Rethinking Intermediate Layers design in Knowledge Distillation for Kidney and Liver Tumor Segmentation
Gorade, Vandan, Mittal, Sparsh, Jha, Debesh, Bagci, Ulas
Knowledge distillation(KD) has demonstrated remarkable success across various domains, but its application to medical imaging tasks, such as kidney and liver tumor segmentation, has encountered challenges. Many existing KD methods are not specifically tailored for these tasks. Moreover, prevalent KD methods often lack a careful consideration of what and from where to distill knowledge from the teacher to the student. This oversight may lead to issues like the accumulation of training bias within shallower student layers, potentially compromising the effectiveness of KD. To address these challenges, we propose Hierarchical Layer-selective Feedback Distillation (HLFD). HLFD strategically distills knowledge from a combination of middle layers to earlier layers and transfers final layer knowledge to intermediate layers at both the feature and pixel levels. This design allows the model to learn higher-quality representations from earlier layers, resulting in a robust and compact student model. Extensive quantitative evaluations reveal that HLFD outperforms existing methods by a significant margin. For example, in the kidney segmentation task, HLFD surpasses the student model (without KD) by over 10pp, significantly improving its focus on tumor-specific features. From a qualitative standpoint, the student model trained using HLFD excels at suppressing irrelevant information and can focus sharply on tumor-specific details, which opens a new pathway for more efficient and accurate diagnostic tools.
A Survey of Techniques for Optimizing Transformer Inference
Chitty-Venkata, Krishna Teja, Mittal, Sparsh, Emani, Murali, Vishwanath, Venkatram, Somani, Arun K.
Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.
DeepPeep: Exploiting Design Ramifications to Decipher the Architecture of Compact DNNs
Jha, Nandan Kumar, Mittal, Sparsh, Kumar, Binod, Mattela, Govardhan
The remarkable predictive performance of deep neural networks (DNNs) has led to their adoption in service domains of unprecedented scale and scope. However, the widespread adoption and growing commercialization of DNNs have underscored the importance of intellectual property (IP) protection. Devising techniques to ensure IP protection has become necessary due to the increasing trend of outsourcing the DNN computations on the untrusted accelerators in cloud-based services. The design methodologies and hyper-parameters of DNNs are crucial information, and leaking them may cause massive economic loss to the organization. Furthermore, the knowledge of DNN's architecture can increase the success probability of an adversarial attack where an adversary perturbs the inputs and alter the prediction. In this work, we devise a two-stage attack methodology "DeepPeep" which exploits the distinctive characteristics of design methodologies to reverse-engineer the architecture of building blocks in compact DNNs. We show the efficacy of "DeepPeep" on P100 and P4000 GPUs. Additionally, we propose intelligent design maneuvering strategies for thwarting IP theft through the DeepPeep attack and proposed "Secure MobileNet-V1". Interestingly, compared to vanilla MobileNet-V1, secure MobileNet-V1 provides a significant reduction in inference latency ($\approx$60%) and improvement in predictive performance ($\approx$2%) with very-low memory and computation overheads.
The Ramifications of Making Deep Neural Networks Compact
Jha, Nandan Kumar, Mittal, Sparsh, Mattela, Govardhan
The recent trend in deep neural networks (DNNs) research is to make the networks more compact. The motivation behind designing compact DNNs is to improve energy efficiency since by virtue of having lower memory footprint, compact DNNs have lower number of off-chip accesses which improves energy efficiency. However, we show that making DNNs compact has indirect and subtle implications which are not well-understood. Reducing the number of parameters in DNNs increases the number of activations which, in turn, increases the memory footprint. We evaluate several recently-proposed compact DNNs on Tesla P100 GPU and show that their "activations to parameters ratio" ranges between 1.4 to 32.8. Further, the "memory-footprint to model size ratio" ranges between 15 to 443. This shows that a higher number of activations causes large memory footprint which increases on-chip/off-chip data movements. Furthermore, these parameter-reducing techniques reduce the arithmetic intensity which increases on-chip/off-chip memory bandwidth requirement. Due to these factors, the energy efficiency of compact DNNs may be significantly reduced which is against the original motivation for designing compact DNNs.
E2GC: Energy-efficient Group Convolution in Deep Neural Networks
Jha, Nandan Kumar, Saini, Rajat, Nag, Subhrajit, Mittal, Sparsh
The number of groups ($g$) in group convolution (GConv) is selected to boost the predictive performance of deep neural networks (DNNs) in a compute and parameter efficient manner. However, we show that naive selection of $g$ in GConv creates an imbalance between the computational complexity and degree of data reuse, which leads to suboptimal energy efficiency in DNNs. We devise an optimum group size model, which enables a balance between computational cost and data movement cost, thus, optimize the energy-efficiency of DNNs. Based on the insights from this model, we propose an "energy-efficient group convolution" (E2GC) module where, unlike the previous implementations of GConv, the group size ($G$) remains constant. Further, to demonstrate the efficacy of the E2GC module, we incorporate this module in the design of MobileNet-V1 and ResNeXt-50 and perform experiments on two GPUs, P100 and P4000. We show that, at comparable computational complexity, DNNs with constant group size (E2GC) are more energy-efficient than DNNs with a fixed number of groups (F$g$GC). For example, on P100 GPU, the energy-efficiency of MobileNet-V1 and ResNeXt-50 is increased by 10.8% and 4.73% (respectively) when E2GC modules substitute the F$g$GC modules in both the DNNs. Furthermore, through our extensive experimentation with ImageNet-1K and Food-101 image classification datasets, we show that the E2GC module enables a trade-off between generalization ability and representational power of DNN. Thus, the predictive performance of DNNs can be optimized by selecting an appropriate $G$. The code and trained models are available at https://github.com/iithcandle/E2GC-release.