Goto

Collaborating Authors

 Mittal, Ashish


Soft Random Sampling: A Theoretical and Empirical Analysis

arXiv.org Artificial Intelligence

Soft random sampling (SRS) is a simple yet effective approach for efficient training of large-scale deep neural networks when dealing with massive data. SRS selects a subset uniformly at random with replacement from the full data set in each epoch. In this paper, we conduct a theoretical and empirical analysis of SRS. First, we analyze its sampling dynamics including data coverage and occupancy. Next, we investigate its convergence with non-convex objective functions and give the convergence rate. Finally, we provide its generalization performance. We empirically evaluate SRS for image recognition on CIFAR10 and automatic speech recognition on Librispeech and an in-house payload dataset to demonstrate its effectiveness. Compared to existing coreset-based data selection methods, SRS offers a better accuracy-efficiency trade-off. Especially on real-world industrial scale data sets, it is shown to be a powerful training strategy with significant speedup and competitive performance with almost no additional computing cost.


Improving RNN-Transducers with Acoustic LookAhead

arXiv.org Artificial Intelligence

RNN-Transducers (RNN-Ts) have gained widespread acceptance as an end-to-end model for speech to text conversion because of their high accuracy and streaming capabilities. A typical RNN-T independently encodes the input audio and the text context, and combines the two encodings by a thin joint network. While this architecture provides SOTA streaming accuracy, it also makes the model vulnerable to strong LM biasing which manifests as multi-step hallucination of text without acoustic evidence. In this paper we propose LookAhead that makes text representations more acoustically grounded by looking ahead into the future within the audio input. This technique yields a significant 5%-20% relative reduction in word error rate on both in-domain and out-of-domain evaluation sets.


Numerical Relation Extraction with Minimal Supervision

AAAI Conferences

We study a novel task of numerical relation extraction with the goal of extracting relations where one of the arguments is a number or a quantity ( e.g., atomic_number(Aluminium, 13), inflation_rate(India, 10.9%)). This task presents peculiar challenges not found in standard IE, such as the difficulty of matching numbers in distant supervision and the importance of units. We design two extraction systems that require minimal human supervision per relation: (1) NumberRule, a rule based extractor, and (2) NumberTron, a probabilistic graphical model. We find that both systems dramatically outperform MultiR, a state-of-the-art non-numerical IE model, obtaining up to 25 points F-score improvement.