Goto

Collaborating Authors

 Mittal, Arpit


The Automated Verification of Textual Claims (AVeriTeC) Shared Task

arXiv.org Artificial Intelligence

The Automated Verification of Textual Claims (AVeriTeC) shared task asks participants to retrieve evidence and predict veracity for real-world claims checked by fact-checkers. Evidence can be found either via a search engine, or via a knowledge store provided by the organisers. Submissions are evaluated using AVeriTeC score, which considers a claim to be accurately verified if and only if both the verdict is correct and retrieved evidence is considered to meet a certain quality threshold. The shared task received 21 submissions, 18 of which surpassed our baseline. The winning team was TUDA_MAI with an AVeriTeC score of 63%. In this paper we describe the shared task, present the full results, and highlight key takeaways from the shared task.


CHIP: Contrastive Hierarchical Image Pretraining

arXiv.org Artificial Intelligence

Few-shot object classification is the task of classifying objects in an image with limited number of examples as supervision. We propose a one-shot/few-shot classification model that can classify an object of any unseen class into a relatively general category in an hierarchically based classification. Our model uses a three-level hierarchical contrastive loss based ResNet152 classifier for classifying an object based on its features extracted from Image embedding, not used during the training phase. For our experimentation, we have used a subset of the ImageNet (ILSVRC-12) dataset that contains only the animal classes for training our model and created our own dataset of unseen classes for evaluating our trained model. Our model provides satisfactory results in classifying the unknown objects into a generic category which has been later discussed in greater detail.


Emotion-Cause Pair Extraction in Customer Reviews

arXiv.org Artificial Intelligence

Emotion-Cause Pair Extraction (ECPE) is a complex yet popular area in Natural Language Processing due to its importance and potential applications in various domains. In this report , we aim to present our work in ECPE in the domain of online reviews. With a manually annotated dataset, we explore an algorithm to extract emotion cause pairs using a neural network. In addition, we propose a model using previous reference materials and combining emotion-cause pair extraction with research in the domain of emotion-aware word embeddings, where we send these embeddings into a Bi-LSTM layer which gives us the emotionally relevant clauses. With the constraint of a limited dataset, we achieved . The overall scope of our report comprises of a comprehensive literature review, implementation of referenced methods for dataset construction and initial model training, and modifying previous work in ECPE by proposing an improvement to the pipeline, as well as algorithm development and implementation for the specific domain of reviews.


Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning

arXiv.org Artificial Intelligence

The goal of a Question Paraphrase Retrieval (QPR) system is to retrieve equivalent questions that result in the same answer as the original question. Such a system can be used to understand and answer rare and noisy reformulations of common questions by mapping them to a set of canonical forms. This has large-scale applications for community Question Answering (cQA) and open-domain spoken language question answering systems. In this paper we describe a new QPR system implemented as a Neural Information Retrieval (NIR) system consisting of a neural network sentence encoder and an approximate k-Nearest Neighbour index for efficient vector retrieval. We also describe our mechanism to generate an annotated dataset for question paraphrase retrieval experiments automatically from question-answer logs via distant supervision. We show that the standard loss function in NIR, triplet loss, does not perform well with noisy labels. We propose smoothed deep metric loss (SDML) and with our experiments on two QPR datasets we show that it significantly outperforms triplet loss in the noisy label setting.


Generating Token-Level Explanations for Natural Language Inference

arXiv.org Machine Learning

The task of Natural Language Inference (NLI) is widely modeled as supervised sentence pair classification. While there has been a lot of work recently on generating explanations of the predictions of classifiers on a single piece of text, there have been no attempts to generate explanations of classifiers operating on pairs of sentences. In this paper, we show that it is possible to generate token-level explanations for NLI without the need for training data explicitly annotated for this purpose. We use a simple LSTM architecture and evaluate both LIME and Anchor explanations for this task. We compare these to a Multiple Instance Learning (MIL) method that uses thresholded attention make token-level predictions. The approach we present in this paper is a novel extension of zero-shot single-sentence tagging to sentence pairs for NLI. We conduct our experiments on the well-studied SNLI dataset that was recently augmented with manually annotation of the tokens that explain the entailment relation. We find that our white-box MIL-based method, while orders of magnitude faster, does not reach the same accuracy as the black-box methods.


Demand-Weighted Completeness Prediction for a Knowledge Base

arXiv.org Artificial Intelligence

In this paper we introduce the notion of Demand-Weighted Completeness, allowing estimation of the completeness of a knowledge base with respect to how it is used. Defining an entity by its classes, we employ usage data to predict the distribution over relations for that entity. For example, instances of person in a knowledge base may require a birth date, name and nationality to be considered complete. These predicted relation distributions enable detection of important gaps in the knowledge base, and define the required facts for unseen entities. Such characterisation of the knowledge base can also quantify how usage and completeness change over time. We demonstrate a method to measure Demand-Weighted Completeness, and show that a simple neural network model performs well at this prediction task.