Not enough data to create a plot.
Try a different view from the menu above.
Mitra, Bhaskar
Tip of the Tongue Query Elicitation for Simulated Evaluation
He, Yifan, Kim, To Eun, Diaz, Fernando, Arguello, Jaime, Mitra, Bhaskar
Tip-of-the-tongue (TOT) search occurs when a user struggles to recall a specific identifier, such as a document title. While common, existing search systems often fail to effectively support TOT scenarios. Research on TOT retrieval is further constrained by the challenge of collecting queries, as current approaches rely heavily on community question-answering (CQA) websites, leading to labor-intensive evaluation and domain bias. To overcome these limitations, we introduce two methods for eliciting TOT queries - leveraging large language models (LLMs) and human participants - to facilitate simulated evaluations of TOT retrieval systems. Our LLM-based TOT user simulator generates synthetic TOT queries at scale, achieving high correlations with how CQA-based TOT queries rank TOT retrieval systems when tested in the Movie domain. Additionally, these synthetic queries exhibit high linguistic similarity to CQA-derived queries. For human-elicited queries, we developed an interface that uses visual stimuli to place participants in a TOT state, enabling the collection of natural queries. In the Movie domain, system rank correlation and linguistic similarity analyses confirm that human-elicited queries are both effective and closely resemble CQA-based queries. These approaches reduce reliance on CQA-based data collection while expanding coverage to underrepresented domains, such as Landmark and Person. LLM-elicited queries for the Movie, Landmark, and Person domains have been released as test queries in the TREC 2024 TOT track, with human-elicited queries scheduled for inclusion in the TREC 2025 TOT track. Additionally, we provide source code for synthetic query generation and the human query collection interface, along with curated visual stimuli used for eliciting TOT queries.
Sociotechnical Implications of Generative Artificial Intelligence for Information Access
Mitra, Bhaskar, Cramer, Henriette, Gurevich, Olya
Robust access to trustworthy information is a critical need for society including implications for knowledge production, public health education, and promoting informed citizenry in democratic societies. Generative AI technologies such as large language models (LLMs) may enable new ways to access information and improve effectiveness of existing information retrieval (IR) systems. More efficient basic task execution with the help of LLMs can also enable people to focus on the more challenging aspects of information retrieval related tasks and research. However, the long-term social implications of deploying these technologies in the context of information access are not yet well-understood. Existing research has focused on how these models may generate biased and harmful content [11, 23, 69, 80, 124, 158, 236] as well as the environmental costs [23, 31, 61, 166, 167, 241] of developing and deploying these models at scale. In the context of information access, Shah and Bender [187] have argued that certain framings of LLMs as "search engines" lack the necessary theoretical underpinnings and may constitute as a category error. In this current work, we present a broader perspective on the sociotechnical implications of generative AI for information access. Our perspective is informed by existing literature and aims to provide a summary of known challenges viewed through a systemic lens that we hope will serve as a useful resource for future critical research in this area. We present a summary of these implications next followed by recommendations for evaluation and mitigation later in this chapter.
Synthetic Test Collections for Retrieval Evaluation
Rahmani, Hossein A., Craswell, Nick, Yilmaz, Emine, Mitra, Bhaskar, Campos, Daniel
Test collections play a vital role in evaluation of information retrieval (IR) systems. Obtaining a diverse set of user queries for test collection construction can be challenging, and acquiring relevance judgments, which indicate the appropriateness of retrieved documents to a query, is often costly and resource-intensive. Generating synthetic datasets using Large Language Models (LLMs) has recently gained significant attention in various applications. In IR, while previous work exploited the capabilities of LLMs to generate synthetic queries or documents to augment training data and improve the performance of ranking models, using LLMs for constructing synthetic test collections is relatively unexplored. Previous studies demonstrate that LLMs have the potential to generate synthetic relevance judgments for use in the evaluation of IR systems. In this paper, we comprehensively investigate whether it is possible to use LLMs to construct fully synthetic test collections by generating not only synthetic judgments but also synthetic queries. In particular, we analyse whether it is possible to construct reliable synthetic test collections and the potential risks of bias such test collections may exhibit towards LLM-based models. Our experiments indicate that using LLMs it is possible to construct synthetic test collections that can reliably be used for retrieval evaluation.
DiSK: A Diffusion Model for Structured Knowledge
Kitouni, Ouail, Nolte, Niklas, Hensman, James, Mitra, Bhaskar
Structured (dictionary-like) data presents challenges for left-to-right language models, as they can struggle with structured entities for a wide variety of reasons such as formatting and sensitivity to the order in which attributes are presented. Tabular generative models suffer from a different set of limitations such as their lack of flexibility. We introduce Diffusion Models of Structured Knowledge (DiSK) - a new architecture and training approach specialized for structured data. DiSK handles text, categorical, and continuous numerical data using a Gaussian mixture model approach, which allows for improved precision when dealing with numbers. It employs diffusion training to model relationships between properties. Experiments demonstrate DiSK's state-of-the-art performance on tabular data modeling, synthesis, and imputation on over 15 datasets across diverse domains. DiSK provides an effective inductive bias for generative modeling and manipulation of structured data. The techniques we propose could open the door to improved knowledge manipulation in future language models.
Structured Entity Extraction Using Large Language Models
Wu, Haolun, Yuan, Ye, Mikaelyan, Liana, Meulemans, Alexander, Liu, Xue, Hensman, James, Mitra, Bhaskar
Recent advances in machine learning have significantly impacted the field of information extraction, with Large Language Models (LLMs) playing a pivotal role in extracting structured information from unstructured text. This paper explores the challenges and limitations of current methodologies in structured entity extraction and introduces a novel approach to address these issues. We contribute to the field by first introducing and formalizing the task of Structured Entity Extraction (SEE), followed by proposing Approximate Entity Set OverlaP (AESOP) Metric designed to appropriately assess model performance on this task. Later, we propose a new model that harnesses the power of LLMs for enhanced effectiveness and efficiency through decomposing the entire extraction task into multiple stages. Quantitative evaluation and human side-by-side evaluation confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction.
Through the Looking-Glass: Transparency Implications and Challenges in Enterprise AI Knowledge Systems
Cortiรฑas-Lorenzo, Karina, Lindley, Siรขn, Larsen-Ledet, Ida, Mitra, Bhaskar
Knowledge can't be disentangled from people. As AI knowledge systems mine vast volumes of work-related data, the knowledge that's being extracted and surfaced is intrinsically linked to the people who create and use it. When these systems get embedded in organizational settings, the information that is brought to the foreground and the information that's pushed to the periphery can influence how individuals see each other and how they see themselves at work. In this paper, we present the looking-glass metaphor and use it to conceptualize AI knowledge systems as systems that reflect and distort, expanding our view on transparency requirements, implications and challenges. We formulate transparency as a key mediator in shaping different ways of seeing, including seeing into the system, which unveils its capabilities, limitations and behavior, and seeing through the system, which shapes workers' perceptions of their own contributions and others within the organization. Recognizing the sociotechnical nature of these systems, we identify three transparency dimensions necessary to realize the value of AI knowledge systems, namely system transparency, procedural transparency and transparency of outcomes. We discuss key challenges hindering the implementation of these forms of transparency, bringing to light the wider sociotechnical gap and highlighting directions for future Computer-supported Cooperative Work (CSCW) research.
Co-audit: tools to help humans double-check AI-generated content
Gordon, Andrew D., Negreanu, Carina, Cambronero, Josรฉ, Chakravarthy, Rasika, Drosos, Ian, Fang, Hao, Mitra, Bhaskar, Richardson, Hannah, Sarkar, Advait, Simmons, Stephanie, Williams, Jack, Zorn, Ben
Users are increasingly being warned to check AI-generated content for correctness. Still, as LLMs (and other generative models) generate more complex output, such as summaries, tables, or code, it becomes harder for the user to audit or evaluate the output for quality or correctness. Hence, we are seeing the emergence of tool-assisted experiences to help the user double-check a piece of AI-generated content. We refer to these as co-audit tools. Co-audit tools complement prompt engineering techniques: one helps the user construct the input prompt, while the other helps them check the output response. As a specific example, this paper describes recent research on co-audit tools for spreadsheet computations powered by generative models. We explain why co-audit experiences are essential for any application of generative AI where quality is important and errors are consequential (as is common in spreadsheet computations). We propose a preliminary list of principles for co-audit, and outline research challenges.
Large language models can accurately predict searcher preferences
Thomas, Paul, Spielman, Seth, Craswell, Nick, Mitra, Bhaskar
Relevance labels, which indicate whether a search result is valuable to a searcher, are key to evaluating and optimising search systems. The best way to capture the true preferences of users is to ask them for their careful feedback on which results would be useful, but this approach does not scale to produce a large number of labels. Getting relevance labels at scale is usually done with third-party labellers, who judge on behalf of the user, but there is a risk of low-quality data if the labeller doesn't understand user needs. To improve quality, one standard approach is to study real users through interviews, user studies and direct feedback, find areas where labels are systematically disagreeing with users, then educate labellers about user needs through judging guidelines, training and monitoring. This paper introduces an alternate approach for improving label quality. It takes careful feedback from real users, which by definition is the highest-quality first-party gold data that can be derived, and develops an large language model prompt that agrees with that data. We present ideas and observations from deploying language models for large-scale relevance labelling at Bing, and illustrate with data from TREC. We have found large language models can be effective, with accuracy as good as human labellers and similar capability to pick the hardest queries, best runs, and best groups. Systematic changes to the prompts make a difference in accuracy, but so too do simple paraphrases. To measure agreement with real searchers needs high-quality ``gold'' labels, but with these we find that models produce better labels than third-party workers, for a fraction of the cost, and these labels let us train notably better rankers.
Less is Less: When Are Snippets Insufficient for Human vs Machine Relevance Estimation?
Kazai, Gabriella, Mitra, Bhaskar, Dong, Anlei, Craswell, Nick, Yang, Linjun
Traditional information retrieval (IR) ranking models process the full text of documents. Newer models based on Transformers, however, would incur a high computational cost when processing long texts, so typically use only snippets from the document instead. The model's input based on a document's URL, title, and snippet (UTS) is akin to the summaries that appear on a search engine results page (SERP) to help searchers decide which result to click. This raises questions about when such summaries are sufficient for relevance estimation by the ranking model or the human assessor, and whether humans and machines benefit from the document's full text in similar ways. To answer these questions, we study human and neural model based relevance assessments on 12k query-documents sampled from Bing's search logs. We compare changes in the relevance assessments when only the document summaries and when the full text is also exposed to assessors, studying a range of query and document properties, e.g., query type, snippet length. Our findings show that the full text is beneficial for humans and a BERT model for similar query and document types, e.g., tail, long queries. A closer look, however, reveals that humans and machines respond to the additional input in very different ways. Adding the full text can also hurt the ranker's performance, e.g., for navigational queries.
Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
Neophytou, Nicola, Mitra, Bhaskar, Stinson, Catherine
Recommendation algorithms are susceptible to popularity bias: a tendency to recommend popular items even when they fail to meet user needs. A related issue is that the recommendation quality can vary by demographic groups. Marginalized groups or groups that are under-represented in the training data may receive less relevant recommendations from these algorithms compared to others. In a recent study, Ekstrand et al. [15] investigate how recommender performance varies according to popularity and demographics, and find statistically significant differences in recommendation utility between binary genders on two datasets, and significant effects based on age on one dataset. Here we reproduce those results and extend them with additional analyses. We find statistically significant differences in recommender performance by both age and gender. We observe that recommendation utility steadily degrades for older users, and is lower for women than men. We also find that the utility is higher for users from countries with more representation in the dataset. In addition, we find that total usage and the popularity of consumed content are strong predictors of recommender performance and also vary significantly across demographic groups.