Goto

Collaborating Authors

Mitchell, Daniel


Symbiotic System Design for Safe and Resilient Autonomous Robotics in Offshore Wind Farms

arXiv.org Artificial Intelligence

To reduce Operation and Maintenance (O&M) costs on offshore wind farms, wherein 80% of the O&M cost relates to deploying personnel, the offshore wind sector looks to robotics and Artificial Intelligence (AI) for solutions. Barriers to Beyond Visual Line of Sight (BVLOS) robotics include operational safety compliance and resilience, inhibiting the commercialization of autonomous services offshore. To address safety and resilience challenges we propose a symbiotic system; reflecting the lifecycle learning and co-evolution with knowledge sharing for mutual gain of robotic platforms and remote human operators. Our methodology enables the run-time verification of safety, reliability and resilience during autonomous missions. We synchronize digital models of the robot, environment and infrastructure and integrate front-end analytics and bidirectional communication for autonomous adaptive mission planning and situation reporting to a remote operator. A reliability ontology for the deployed robot, based on our holistic hierarchical-relational model, supports computationally efficient platform data analysis. We analyze the mission status and diagnostics of critical sub-systems within the robot to provide automatic updates to our run-time reliability ontology, enabling faults to be translated into failure modes for decision making during the mission. We demonstrate an asset inspection mission within a confined space and employ millimeter-wave sensing to enhance situational awareness to detect the presence of obscured personnel to mitigate risk. Our results demonstrate a symbiotic system provides an enhanced resilience capability to BVLOS missions. A symbiotic system addresses the operational challenges and reprioritization of autonomous mission objectives. This advances the technology required to achieve fully trustworthy autonomous systems.


Learning Macroscopic Brain Connectomes via Group-Sparse Factorization

Neural Information Processing Systems

Mapping structural brain connectomes for living human brains typically requires expert analysis and rule-based models on diffusion-weighted magnetic resonance imaging. A data-driven approach, however, could overcome limitations in such rule-based approaches and improve precision mappings for individuals. In this work, we explore a framework that facilitates applying learning algorithms to automatically extract brain connectomes. Using a tensor encoding, we design an objective with a group-regularizer that prefers biologically plausible fascicle structure. We show that the objective is convex and has unique solutions, ensuring identifiable connectomes for an individual.