Misra, Amita
Controlled Text Generation with Hidden Representation Transformations
Kumar, Vaibhav, Koorehdavoudi, Hana, Moshtaghi, Masud, Misra, Amita, Chadha, Ankit, Ferrara, Emilio
We propose CHRT (Control Hidden Representation Transformation) - a controlled language generation framework that steers large language models to generate text pertaining to certain attributes (such as toxicity). CHRT gains attribute control by modifying the hidden representation of the base model through learned transformations. We employ a contrastive-learning framework to learn these transformations that can be combined to gain multi-attribute control. The effectiveness of CHRT is experimentally shown by comparing it with seven baselines over three attributes. CHRT outperforms all the baselines in the task of detoxification, positive sentiment steering, and text simplification while minimizing the loss in linguistic qualities. Further, our approach has the lowest inference latency of only 0.01 seconds more than the base model, making it the most suitable for high-performance production environments. We open-source our code and release two novel datasets to further propel controlled language generation research.
Machine Translation Impact in E-commerce Multilingual Search
Zhang, Bryan, Misra, Amita
Previous work suggests that performance of cross-lingual information retrieval correlates highly with the quality of Machine Translation. However, there may be a threshold beyond which improving query translation quality yields little or no benefit to further improve the retrieval performance. This threshold may depend upon multiple factors including the source and target languages, the existing MT system quality and the search pipeline. In order to identify the benefit of improving an MT system for a given search pipeline, we investigate the sensitivity of retrieval quality to the presence of different levels of MT quality using experimental datasets collected from actual traffic. We systematically improve the performance of our MT systems quality on language pairs as measured by MT evaluation metrics including Bleu and Chrf to determine their impact on search precision metrics and extract signals that help to guide the improvement strategies. Using this information we develop techniques to compare query translations for multiple language pairs and identify the most promising language pairs to invest and improve.
Accountable Error Characterization
Misra, Amita, Liu, Zhe, Mahmud, Jalal
Customers of machine learning systems demand accountability from the companies employing these algorithms for various prediction tasks. Accountability requires understanding of system limit and condition of erroneous predictions, as customers are often interested in understanding the incorrect predictions, and model developers are absorbed in finding methods that can be used to get incremental improvements to an existing system. Therefore, we propose an accountable error characterization method, AEC, to understand when and where errors occur within the existing black-box models. AEC, as constructed with human-understandable linguistic features, allows the model developers to automatically identify the main sources of errors for a given classification system. It can also be used to sample for the set of most informative input points for a next round of training. We perform error detection for a sentiment analysis task using AEC as a case study. Our results on the sample sentiment task show that AEC is able to characterize erroneous predictions into human understandable categories and also achieves promising results on selecting erroneous samples when compared with the uncertainty-based sampling.
Using Structured Representation and Data: A Hybrid Model for Negation and Sentiment in Customer Service Conversations
Misra, Amita, Bhuiyan, Mansurul, Mahmud, Jalal, Tripathy, Saurabh
Twitter customer service interactions have recently emerged as an effective platform to respond and engage with customers. In this work, we explore the role of negation in customer service interactions, particularly applied to sentiment analysis. We define rules to identify true negation cues and scope more suited to conversational data than existing general review data. Using semantic knowledge and syntactic structure from constituency parse trees, we propose an algorithm for scope detection that performs comparable to state of the art BiLSTM. We further investigate the results of negation scope detection for the sentiment prediction task on customer service conversation data using both a traditional SVM and a Neural Network. We propose an antonym dictionary based method for negation applied to a CNN-LSTM combination model for sentiment analysis. Experimental results show that the antonym-based method outperforms the previous lexicon-based and neural network methods.
Don't get Lost in Negation: An Effective Negation Handled Dialogue Acts Prediction Algorithm for Twitter Customer Service Conversations
Bhuiyan, Mansurul, Misra, Amita, Tripathy, Saurabh, Mahmud, Jalal, Akkiraju, Rama
In the last several years, Twitter is being adopted by the companies as an alternative platform to interact with the customers to address their concerns. With the abundance of such unconventional conversation resources, push for developing effective virtual agents is more than ever. To address this challenge, a better understanding of such customer service conversations is required. Lately, there have been several works proposing a novel taxonomy for fine-grained dialogue acts as well as develop algorithms for automatic detection of these acts. The outcomes of these works are providing stepping stones for the ultimate goal of building efficient and effective virtual agents. But none of these works consider handling the notion of negation into the proposed algorithms. In this work, we developed an SVM-based dialogue acts prediction algorithm for Twitter customer service conversations where negation handling is an integral part of the end-to-end solution. For negation handling, we propose several efficient heuristics as well as adopt recent state-of- art third party machine learning based solutions. Empirically we show model's performance gain while handling negation compared to when we don't. Our experiments show that for the informal text such as tweets, the heuristic-based approach is more effective.