Goto

Collaborating Authors

 Mishra, Pushkar


Value Profiles for Encoding Human Variation

arXiv.org Artificial Intelligence

Modelling human variation in rating tasks is crucial for enabling AI systems for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using value profiles -- natural language descriptions of underlying values compressed from in-context demonstrations -- along with a steerable decoder model to estimate ratings conditioned on a value profile or other rater information. To measure the predictive information in rater representations, we introduce an information-theoretic methodology. We find that demonstrations contain the most information, followed by value profiles and then demographics. However, value profiles offer advantages in terms of scrutability, interpretability, and steerability due to their compressed natural language format. Value profiles effectively compress the useful information from demonstrations (>70% information preservation). Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder models interpretably change ratings according to semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.


Insights on Disagreement Patterns in Multimodal Safety Perception across Diverse Rater Groups

arXiv.org Artificial Intelligence

AI systems crucially rely on human ratings, but these ratings are often aggregated, obscuring the inherent diversity of perspectives in real-world phenomenon. This is particularly concerning when evaluating the safety of generative AI, where perceptions and associated harms can vary significantly across socio-cultural contexts. While recent research has studied the impact of demographic differences on annotating text, there is limited understanding of how these subjective variations affect multimodal safety in generative AI. To address this, we conduct a large-scale study employing highly-parallel safety ratings of about 1000 text-to-image (T2I) generations from a demographically diverse rater pool of 630 raters balanced across 30 intersectional groups across age, gender, and ethnicity. Our study shows that (1) there are significant differences across demographic groups (including intersectional groups) on how severe they assess the harm to be, and that these differences vary across different types of safety violations, (2) the diverse rater pool captures annotation patterns that are substantially different from expert raters trained on specific set of safety policies, and (3) the differences we observe in T2I safety are distinct from previously documented group level differences in text-based safety tasks. To further understand these varying perspectives, we conduct a qualitative analysis of the open-ended explanations provided by raters. This analysis reveals core differences into the reasons why different groups perceive harms in T2I generations. Our findings underscore the critical need for incorporating diverse perspectives into safety evaluation of generative AI ensuring these systems are truly inclusive and reflect the values of all users.


Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalisation of Misinformation Detection Models

arXiv.org Artificial Intelligence

This paper introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalisation. Misinformation changes rapidly, much quicker than moderators can annotate at scale, resulting in a shift between the training and inference data distributions. As a result, misinformation models need to be able to perform out-of-distribution generalisation, an understudied problem in existing datasets. We identify 6 axes of generalisation-time, event, topic, publisher, political bias, misinformation type-and design evaluation procedures for each. We also analyse some baseline models, highlighting how these fail important desiderata.


A (More) Realistic Evaluation Setup for Generalisation of Community Models on Malicious Content Detection

arXiv.org Artificial Intelligence

Community models for malicious content detection, which take into account the context from a social graph alongside the content itself, have shown remarkable performance on benchmark datasets. Yet, misinformation and hate speech continue to propagate on social media networks. This mismatch can be partially attributed to the limitations of current evaluation setups that neglect the rapid evolution of online content and the underlying social graph. In this paper, we propose a novel evaluation setup for model generalisation based on our few-shot subgraph sampling approach. This setup tests for generalisation through few labelled examples in local explorations of a larger graph, emulating more realistic application settings. We show this to be a challenging inductive setup, wherein strong performance on the training graph is not indicative of performance on unseen tasks, domains, or graph structures. Lastly, we show that graph meta-learners trained with our proposed few-shot subgraph sampling outperform standard community models in the inductive setup. We make our code publicly available.


Investigating the Robustness of Sequential Recommender Systems Against Training Data Perturbations

arXiv.org Artificial Intelligence

Sequential Recommender Systems (SRSs) are widely employed to model user behavior over time. However, their robustness in the face of perturbations in training data remains a largely understudied yet critical issue. A fundamental challenge emerges in previous studies aimed at assessing the robustness of SRSs: the Rank-Biased Overlap (RBO) similarity is not particularly suited for this task as it is designed for infinite rankings of items and thus shows limitations in real-world scenarios. For instance, it fails to achieve a perfect score of 1 for two identical finite-length rankings. To address this challenge, we introduce a novel contribution: Finite Rank-Biased Overlap (FRBO), an enhanced similarity tailored explicitly for finite rankings. This innovation facilitates a more intuitive evaluation in practical settings. In pursuit of our goal, we empirically investigate the impact of removing items at different positions within a temporally ordered sequence. We evaluate two distinct SRS models across multiple datasets, measuring their performance using metrics such as Normalized Discounted Cumulative Gain (NDCG) and Rank List Sensitivity. Our results demonstrate that removing items at the end of the sequence has a statistically significant impact on performance, with NDCG decreasing up to 60%. Conversely, removing items from the beginning or middle has no significant effect. These findings underscore the criticality of the position of perturbed items in the training data. As we spotlight the vulnerabilities inherent in current SRSs, we fervently advocate for intensified research efforts to fortify their robustness against adversarial perturbations.


Llama 2: Open Foundation and Fine-Tuned Chat Models

arXiv.org Artificial Intelligence

In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.


Scientific and Creative Analogies in Pretrained Language Models

arXiv.org Artificial Intelligence

This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.


Modeling Users and Online Communities for Abuse Detection: A Position on Ethics and Explainability

arXiv.org Artificial Intelligence

Abuse on the Internet is an important societal problem of our time. Millions of Internet users face harassment, racism, personal attacks, and other types of abuse across various platforms. The psychological effects of abuse on individuals can be profound and lasting. Consequently, over the past few years, there has been a substantial research effort towards automated abusive language detection in the field of NLP. In this position paper, we discuss the role that modeling of users and online communities plays in abuse detection. Specifically, we review and analyze the state of the art methods that leverage user or community information to enhance the understanding and detection of abusive language. We then explore the ethical challenges of incorporating user and community information, laying out considerations to guide future research. Finally, we address the topic of explainability in abusive language detection, proposing properties that an explainable method should aim to exhibit. We describe how user and community information can facilitate the realization of these properties and discuss the effective operationalization of explainability in view of the properties.