Mishra, Deepak
RibCageImp: A Deep Learning Framework for 3D Ribcage Implant Generation
Chaubey, Gyanendra, Farooq, Aiman, Singh, Azad, Mishra, Deepak
The recovery of damaged or resected ribcage structures requires precise, custom-designed implants to restore the integrity and functionality of the thoracic cavity. Traditional implant design methods rely mainly on manual processes, making them time-consuming and susceptible to variability. In this work, we explore the feasibility of automated ribcage implant generation using deep learning. We present a framework based on 3D U-Net architecture that processes CT scans to generate patient-specific implant designs. To the best of our knowledge, this is the first investigation into automated thoracic implant generation using deep learning approaches. Our preliminary results, while moderate, highlight both the potential and the significant challenges in this complex domain. These findings establish a foundation for future research in automated ribcage reconstruction and identify key technical challenges that need to be addressed for practical implementation.
Client Contribution Normalization for Enhanced Federated Learning
Kundalwal, Mayank Kumar, Saraswat, Anurag, Mishra, Ishan, Mishra, Deepak
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data, presenting significant challenges for traditional centralized machine learning models due to substantial communication costs and privacy risks. Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing. However, FL faces challenges due to statistical heterogeneity among clients, where non-independent and identically distributed (non-IID) data impedes model convergence and performance. This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models. The proposed method normalizes client contributions based on these representations, allowing the central server to estimate and adjust for heterogeneity during aggregation. This normalization enhances the global model's generalization and mitigates the limitations of conventional federated averaging methods. The main contributions include introducing a normalization scheme using mean latent representations to handle statistical heterogeneity in FL, demonstrating the seamless integration with existing FL algorithms to improve performance in non-IID settings, and validating the approach through extensive experiments on diverse datasets. Results show significant improvements in model accuracy and consistency across skewed distributions. Our experiments with six FL schemes: FedAvg, FedProx, FedBABU, FedNova, SCAFFOLD, and SGDM highlight the robustness of our approach. This research advances FL by providing a practical and computationally efficient solution for statistical heterogeneity, contributing to the development of more reliable and generalized machine learning models.
OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation
Singh, Azad, Gorade, Vandan, Mishra, Deepak
Self-supervised learning (SSL) has emerged as a promising technique for medical image analysis due to its ability to learn without annotations. However, despite the promising potential, conventional SSL methods encounter limitations, including challenges in achieving semantic alignment and capturing subtle details. This leads to suboptimal representations, which fail to accurately capture the underlying anatomical structures and pathological details. In response to these constraints, we introduce a novel SSL framework OPTiML, employing optimal transport (OT), to capture the dense semantic invariance and fine-grained details, thereby enhancing the overall effectiveness of SSL in medical image representation learning. The core idea is to integrate OT with a cross-viewpoint semantics infusion module (CV-SIM), which effectively captures complex, fine-grained details inherent in medical images across different viewpoints. In addition to the CV-SIM module, OPTiML imposes the variance and covariance regularizations within OT framework to force the model focus on clinically relevant information while discarding less informative features. Through these, the proposed framework demonstrates its capacity to learn semantically rich representations that can be applied to various medical imaging tasks. To validate its effectiveness, we conduct experimental studies on three publicly available datasets from chest X-ray modality. Our empirical results reveal OPTiML's superiority over state-of-the-art methods across all evaluated tasks.
MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning
Singh, Azad, Gorade, Vandan, Mishra, Deepak
Self-supervised learning (SSL) is potentially useful in reducing the need for manual annotation and making deep learning models accessible for medical image analysis tasks. By leveraging the representations learned from unlabeled data, self-supervised models perform well on tasks that require little to no fine-tuning. However, for medical images, like chest X-rays, which are characterized by complex anatomical structures and diverse clinical conditions, there arises a need for representation learning techniques that can encode fine-grained details while preserving the broader contextual information. In this context, we introduce MLVICX (Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning), an approach to capture rich representations in the form of embeddings from chest X-ray images. Central to our approach is a novel multi-level variance and covariance exploration strategy that empowers the model to detect diagnostically meaningful patterns while reducing redundancy effectively. By enhancing the variance and covariance of the learned embeddings, MLVICX promotes the retention of critical medical insights by adapting both global and local contextual details. We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning through comprehensive experiments. The performance enhancements we observe across various downstream tasks highlight the significance of the proposed approach in enhancing the utility of chest X-ray embeddings for precision medical diagnosis and comprehensive image analysis. For pertaining, we used the NIH-Chest X-ray dataset, while for downstream tasks, we utilized NIH-Chest X-ray, Vinbig-CXR, RSNA pneumonia, and SIIM-ACR Pneumothorax datasets. Overall, we observe more than 3% performance gains over SOTA SSL approaches in various downstream tasks.
Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs
Mondal, Abhishek, Mishra, Deepak, Prasad, Ganesh, Alexandropoulos, George C., Alnahari, Azzam, Jantti, Riku
Effective solutions for intelligent data collection in terrestrial cellular networks are crucial, especially in the context of Internet of Things applications. The limited spectrum and coverage area of terrestrial base stations pose challenges in meeting the escalating data rate demands of network users. Unmanned aerial vehicles, known for their high agility, mobility, and flexibility, present an alternative means to offload data traffic from terrestrial BSs, serving as additional access points. This paper introduces a novel approach to efficiently maximize the utilization of multiple UAVs for data traffic offloading from terrestrial BSs. Specifically, the focus is on maximizing user association with UAVs by jointly optimizing UAV trajectories and users association indicators under quality of service constraints. Since, the formulated UAVs control problem is nonconvex and combinatorial, this study leverages the multi agent reinforcement learning framework. In this framework, each UAV acts as an independent agent, aiming to maintain inter UAV cooperative behavior. The proposed approach utilizes the finite state Markov decision process to account for UAVs velocity constraints and the relationship between their trajectories and state space. A low complexity distributed state action reward state action algorithm is presented to determine UAVs optimal sequential decision making policies over training episodes. The extensive simulation results validate the proposed analysis and offer valuable insights into the optimal UAV trajectories. The derived trajectories demonstrate superior average UAV association performance compared to benchmark techniques such as Q learning and particle swarm optimization.
On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence
Mai, Gengchen, Huang, Weiming, Sun, Jin, Song, Suhang, Mishra, Deepak, Liu, Ninghao, Gao, Song, Liu, Tianming, Cong, Gao, Hu, Yingjie, Cundy, Chris, Li, Ziyuan, Zhu, Rui, Lao, Ni
Large pre-trained models, also known as foundation models (FMs), are trained in a task-agnostic manner on large-scale data and can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or even zero-shot learning. Despite their successes in language and vision tasks, we have yet seen an attempt to develop foundation models for geospatial artificial intelligence (GeoAI). In this work, we explore the promises and challenges of developing multimodal foundation models for GeoAI. We first investigate the potential of many existing FMs by testing their performances on seven tasks across multiple geospatial subdomains including Geospatial Semantics, Health Geography, Urban Geography, and Remote Sensing. Our results indicate that on several geospatial tasks that only involve text modality such as toponym recognition, location description recognition, and US state-level/county-level dementia time series forecasting, these task-agnostic LLMs can outperform task-specific fully-supervised models in a zero-shot or few-shot learning setting. However, on other geospatial tasks, especially tasks that involve multiple data modalities (e.g., POI-based urban function classification, street view image-based urban noise intensity classification, and remote sensing image scene classification), existing foundation models still underperform task-specific models. Based on these observations, we propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks. After discussing the distinct challenges of each geospatial data modality, we suggest the possibility of a multimodal foundation model which can reason over various types of geospatial data through geospatial alignments. We conclude this paper by discussing the unique risks and challenges to develop such a model for GeoAI.
Distilling Calibrated Student from an Uncalibrated Teacher
Mishra, Ishan, Krishna, Sethu Vamsi, Mishra, Deepak
Knowledge distillation is a common technique for improving the performance of a shallow student network by transferring information from a teacher network, which in general, is comparatively large and deep. These teacher networks are pre-trained and often uncalibrated, as no calibration technique is applied to the teacher model while training. Calibration of a network measures the probability of correctness for any of its predictions, which is critical in high-risk domains. In this paper, we study how to obtain a calibrated student from an uncalibrated teacher. Our approach relies on the fusion of the data-augmentation techniques, including but not limited to cutout, mixup, and CutMix, with knowledge distillation. We extend our approach beyond traditional knowledge distillation and find it suitable for Relational Knowledge Distillation and Contrastive Representation Distillation as well. The novelty of the work is that it provides a framework to distill a calibrated student from an uncalibrated teacher model without compromising the accuracy of the distilled student. We perform extensive experiments to validate our approach on various datasets, including CIFAR-10, CIFAR-100, CINIC-10 and TinyImageNet, and obtained calibrated student models. We also observe robust performance of our approach while evaluating it on corrupted CIFAR-100C data.
Pose Invariant Person Re-Identification using Robust Pose-transformation GAN
Karmakar, Arnab, Mishra, Deepak
Person re-identification (re-ID) aims to retrieve a person's images from an image gallery, given a single instance of the person of interest. Despite several advancements, learning discriminative identity-sensitive and viewpoint invariant features for robust Person Re-identification is a major challenge owing to large pose variation of humans. This paper proposes a re-ID pipeline that utilizes the image generation capability of Generative Adversarial Networks combined with pose regression and feature fusion to achieve pose invariant feature learning. The objective is to model a given person under different viewpoints and large pose changes and extract the most discriminative features from all the appearances. The pose transformational GAN (pt-GAN) module is trained to generate a person's image in any given pose. In order to identify the most significant poses for discriminative feature extraction, a Pose Regression module is proposed. The given instance of the person is modelled in varying poses and these features are effectively combined through the Feature Fusion Network. The final re-ID model consisting of these 3 sub-blocks, alleviates the pose dependence in person re-ID and outperforms the state-of-the-art GAN based models for re-ID in 4 benchmark datasets. The proposed model is robust to occlusion, scale and illumination, thereby outperforms the state-of-the-art models in terms of improvement over baseline.
pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs
Singh, Gagandeep, Mishra, Deepak
Conventional Bayesian Neural Networks (BNNs) are known to be capable of providing multiple outputs for a single input, the variations in which can be utilised to detect Out of Distribution (OOD) inputs. BNNs are difficult to train due to their sensitivity towards the choice of priors. To alleviate this issue, we propose pseudo-BNNs where instead of learning distributions over weights, we use point estimates and perturb weights at the time of inference. We modify the cost function of conventional BNNs and use it to learn parameters for the purpose of injecting right amount of random perturbations to each of the weights of a neural network with point estimate. In order to effectively segregate OOD inputs from In Distribution (ID) inputs using multiple outputs, we further propose two measures, derived from the index of dispersion and entropy of probability distributions, and combine them with the proposed pseudo-BNNs. Overall, this combination results in a principled technique to detect OOD samples at the time of inference. We evaluate our technique on a wide variety of neural network architectures and image classification datasets. We observe that our method achieves state of the art results and beats the related previous work on various metrics such as FPR at 95% TPR, AUROC, AUPR and Detection Error by just using 2 to 5 samples of weights per input.
Effect of The Latent Structure on Clustering with GANs
Mishra, Deepak, Jayendran, Aravind, P, Prathosh A.
Generative adversarial networks (GANs) have shown remarkable success in generation of data from natural data manifolds such as images. In several scenarios, it is desirable that generated data is well-clustered, especially when there is severe class imbalance. In this paper, we focus on the problem of clustering in generated space of GANs and uncover its relationship with the characteristics of the latent space. We derive from first principles, the necessary and sufficient conditions needed to achieve faithful clustering in the GAN framework: (i) presence of a multimodal latent space with adjustable priors, (ii) existence of a latent space inversion mechanism and (iii) imposition of the desired cluster priors on the latent space. We also identify the GAN models in the literature that partially satisfy these conditions and demonstrate the importance of all the components required, through ablative studies on multiple real world image datasets. Additionally, we describe a procedure to construct a multimodal latent space which facilitates learning of cluster priors with sparse supervision.